Globally Convergent Interior-Point Algorithm for Nonlinear Programming
This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced th...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 125; číslo 3; s. 497 - 521 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Springer
01.06.2005
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced through the use of an adaptive quadratic penalty function. The penalty parameter is determined using a strategy that ensures a descent property for a merit function. Global convergence of the algorithm is achieved through the monotonic decrease of a merit function. Finally, extensive computational results show that the algorithm can solve large and difficult problems in an efficient and robust way. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-005-2086-2 |