Globally Convergent Interior-Point Algorithm for Nonlinear Programming

This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 125; číslo 3; s. 497 - 521
Hlavní autori: Akrotirianakis, I., Rustem, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Springer 01.06.2005
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced through the use of an adaptive quadratic penalty function. The penalty parameter is determined using a strategy that ensures a descent property for a merit function. Global convergence of the algorithm is achieved through the monotonic decrease of a merit function. Finally, extensive computational results show that the algorithm can solve large and difficult problems in an efficient and robust way.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-005-2086-2