On the Proximal Gradient Algorithm with Alternated Inertia

In this paper, we investigate attractive properties of the proximal gradient algorithm with inertia. Notably, we show that using alternated inertia yields monotonically decreasing functional values, which contrasts with usual accelerated proximal gradient methods. We also provide convergence rates f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 176; číslo 3; s. 688 - 710
Hlavní autoři: Iutzeler, Franck, Malick, Jérôme
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2018
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate attractive properties of the proximal gradient algorithm with inertia. Notably, we show that using alternated inertia yields monotonically decreasing functional values, which contrasts with usual accelerated proximal gradient methods. We also provide convergence rates for the algorithm with alternated inertia, based on local geometric properties of the objective function. The results are put into perspective by discussions on several extensions (strongly convex case, non-convex case, and alternated extrapolation) and illustrations on common regularized optimization problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1226-4