Fluid and particle dynamics in laser powder bed fusion

In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta materialia Ročník 142; s. 107 - 120
Hlavní autoři: Bidare, P., Bitharas, I., Ward, R.M., Attallah, M.M., Moore, A.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2018
Témata:
ISSN:1359-6454, 1873-2453
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans over several layers were imaged for the first time. The inclination of the laser plume was shifted from forwards to backwards by changing power and scan speed, resulting in different denudation regimes with implications to the heat, mass and momentum transfer of the process. As the build progressed, denudation became less severe than for a single powder layer, but the occurrence of sintered and fused powder agglomerates, which were affected by the plume, increased. Schlieren imaging enabled the visualisation of the Ar gas flow, which takes place in the atmosphere above the bed due to the plume, in addition to its interaction with affected particles. Numerical modelling was used to understand and quantify the observed flow behaviour, through the hydrodynamic treatment of the laser plume as a multi-component Ar-Fe plasma. These results promote the characterisation of fluid dynamic phenomena during the laser powder-bed fusion (LPBF) process, which constitutes a key factor in the prevention of defects in additively manufactured parts. [Display omitted]
AbstractList In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans over several layers were imaged for the first time. The inclination of the laser plume was shifted from forwards to backwards by changing power and scan speed, resulting in different denudation regimes with implications to the heat, mass and momentum transfer of the process. As the build progressed, denudation became less severe than for a single powder layer, but the occurrence of sintered and fused powder agglomerates, which were affected by the plume, increased. Schlieren imaging enabled the visualisation of the Ar gas flow, which takes place in the atmosphere above the bed due to the plume, in addition to its interaction with affected particles. Numerical modelling was used to understand and quantify the observed flow behaviour, through the hydrodynamic treatment of the laser plume as a multi-component Ar-Fe plasma. These results promote the characterisation of fluid dynamic phenomena during the laser powder-bed fusion (LPBF) process, which constitutes a key factor in the prevention of defects in additively manufactured parts. [Display omitted]
Author Bitharas, I.
Moore, A.J.
Ward, R.M.
Attallah, M.M.
Bidare, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Bidare
  fullname: Bidare, P.
  email: p.bidare@hw.ac.uk
  organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
– sequence: 2
  givenname: I.
  surname: Bitharas
  fullname: Bitharas, I.
  email: i.bitharas@hw.ac.uk
  organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
– sequence: 3
  givenname: R.M.
  surname: Ward
  fullname: Ward, R.M.
  organization: School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 4
  givenname: M.M.
  surname: Attallah
  fullname: Attallah, M.M.
  organization: School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 5
  givenname: A.J.
  surname: Moore
  fullname: Moore, A.J.
  email: a.moore@hw.ac.uk
  organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
BookMark eNqFj01LAzEQhoNUsK3-BGH_wK7J5mM3eBApVoWCFz2H7GQWUra7JUmV_ntT6slLB4Z3Ls_LPAsyG6cRCblntGKUqYdtZSHZnU1VTVlTUV1Rya7InLUNL2sh-SzfXOpSCSluyCLGLaWsbgSdE7UeDt4VdnTF3obkYcDCHUe78xALPxaDjRiK_fTjcnToiv4Q_TTekuveDhHv_nJJvtYvn6u3cvPx-r563pTANU9lyyXk6ShvOg1SCWiV4w1wKbFxqtM9z8u0ZQJbVD3lwDoGtbBAEYDzJZHnXghTjAF7sw9-Z8PRMGpO8mZr_uTNSd5QbbJ85h7_ceCTTfnzFKwfLtJPZxqz2rfHYCJ4HAGdDwjJuMlfaPgFEVV7sw
CitedBy_id crossref_primary_10_1016_j_addma_2020_101630
crossref_primary_10_1016_j_addma_2020_101512
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124378
crossref_primary_10_1007_s11661_018_5072_7
crossref_primary_10_1016_j_jmapro_2022_03_030
crossref_primary_10_1016_j_procir_2020_09_037
crossref_primary_10_1016_j_jmapro_2020_11_030
crossref_primary_10_1016_j_jallcom_2018_09_008
crossref_primary_10_1126_science_add4667
crossref_primary_10_1016_j_jallcom_2023_169215
crossref_primary_10_1016_j_tramat_2025_100084
crossref_primary_10_1108_RPJ_03_2023_0108
crossref_primary_10_1007_s10845_022_02055_3
crossref_primary_10_1007_s10845_023_02119_y
crossref_primary_10_1016_j_actamat_2023_118824
crossref_primary_10_1016_j_addma_2020_101081
crossref_primary_10_1007_s00170_018_2495_7
crossref_primary_10_1016_j_addma_2022_103267
crossref_primary_10_1108_RPJ_12_2021_0351
crossref_primary_10_1016_j_addma_2019_100778
crossref_primary_10_1016_j_jallcom_2020_156300
crossref_primary_10_3390_ma13194423
crossref_primary_10_1016_j_addma_2021_102333
crossref_primary_10_3390_ma16020629
crossref_primary_10_1016_j_mtla_2024_102268
crossref_primary_10_1016_j_compositesb_2024_111727
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1126_science_aay7830
crossref_primary_10_1007_s00466_025_02642_0
crossref_primary_10_1016_j_addma_2022_103007
crossref_primary_10_1016_j_optlastec_2021_107289
crossref_primary_10_1016_j_addma_2020_101504
crossref_primary_10_1038_s41467_023_37285_3
crossref_primary_10_1016_j_matdes_2023_112317
crossref_primary_10_1016_j_procir_2022_08_105
crossref_primary_10_1038_s41467_018_03734_7
crossref_primary_10_1108_RPJ_02_2022_0047
crossref_primary_10_1107_S1600577518009554
crossref_primary_10_1080_17452759_2024_2416518
crossref_primary_10_1016_j_jmapro_2020_11_023
crossref_primary_10_1016_j_jmapro_2024_11_024
crossref_primary_10_1016_j_actamat_2022_117901
crossref_primary_10_1016_j_mtla_2020_100878
crossref_primary_10_1088_2631_7990_ad4e1d
crossref_primary_10_3390_app11031213
crossref_primary_10_1016_j_jmrt_2025_06_161
crossref_primary_10_1080_17452759_2024_2446619
crossref_primary_10_1016_j_cjmeam_2022_100037
crossref_primary_10_1016_j_commatsci_2020_109648
crossref_primary_10_3390_app11052375
crossref_primary_10_1016_j_addma_2021_102461
crossref_primary_10_1016_j_jmapro_2023_05_048
crossref_primary_10_1016_j_addma_2023_103676
crossref_primary_10_1016_j_ijmachtools_2020_103686
crossref_primary_10_1016_j_actamat_2020_06_033
crossref_primary_10_1007_s40964_025_01075_8
crossref_primary_10_1038_s41467_019_10009_2
crossref_primary_10_1007_s00170_021_06855_4
crossref_primary_10_1007_s10853_024_10464_3
crossref_primary_10_1016_j_addlet_2022_100083
crossref_primary_10_1016_j_addma_2022_102984
crossref_primary_10_1016_j_matdes_2021_110107
crossref_primary_10_1016_j_powtec_2023_118927
crossref_primary_10_1007_s40964_019_00094_6
crossref_primary_10_3390_thermo5020016
crossref_primary_10_1109_TMECH_2021_3110818
crossref_primary_10_1016_j_addma_2020_101619
crossref_primary_10_1038_s41598_022_24828_9
crossref_primary_10_1088_2053_1591_ad0dd0
crossref_primary_10_1016_j_addma_2025_104970
crossref_primary_10_1007_s11595_025_3151_3
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127781
crossref_primary_10_1016_j_jmrt_2025_03_192
crossref_primary_10_1016_j_jmapro_2021_05_011
crossref_primary_10_1134_S2075113324010118
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_158
crossref_primary_10_1038_s41598_020_67249_2
crossref_primary_10_1016_j_optlastec_2021_107713
crossref_primary_10_1016_j_actamat_2022_118086
crossref_primary_10_1016_j_addlet_2021_100002
crossref_primary_10_1007_s11837_020_04291_5
crossref_primary_10_1016_j_matdes_2024_113211
crossref_primary_10_1103_RevModPhys_94_045002
crossref_primary_10_1088_1361_651X_ad7bd9
crossref_primary_10_1016_j_addma_2020_101722
crossref_primary_10_1016_j_optlastec_2022_108899
crossref_primary_10_1016_j_jma_2024_12_012
crossref_primary_10_1016_j_powtec_2022_117789
crossref_primary_10_1016_j_optlastec_2023_109247
crossref_primary_10_1007_s11831_021_09601_x
crossref_primary_10_1016_j_addma_2025_104859
crossref_primary_10_1038_s41467_022_30667_z
crossref_primary_10_1016_j_jmrt_2025_03_081
crossref_primary_10_1016_j_jmapro_2022_07_031
crossref_primary_10_1088_1361_6463_ab5900
crossref_primary_10_2351_7_0000321
crossref_primary_10_1016_j_ijfatigue_2019_06_008
crossref_primary_10_1016_j_jmrt_2025_03_085
crossref_primary_10_3390_mi14071351
crossref_primary_10_1016_j_apsusc_2022_152796
crossref_primary_10_1016_j_matdes_2022_111063
crossref_primary_10_1016_j_msea_2018_05_044
crossref_primary_10_1093_jrsssc_qlad074
crossref_primary_10_1038_s41598_022_07261_w
crossref_primary_10_1002_adem_202200846
crossref_primary_10_1002_sia_7202
crossref_primary_10_3390_photonics10040411
crossref_primary_10_1016_j_optlastec_2025_113495
crossref_primary_10_1038_s41524_024_01418_z
crossref_primary_10_1016_j_jmrt_2025_04_068
crossref_primary_10_1016_j_addma_2025_104797
crossref_primary_10_1016_j_addma_2021_102093
crossref_primary_10_1007_s40964_023_00491_y
crossref_primary_10_3390_ma14216264
crossref_primary_10_1017_S1431927619013588
crossref_primary_10_1063_5_0205663
crossref_primary_10_1016_j_addma_2019_100978
crossref_primary_10_1016_j_matdes_2023_112069
crossref_primary_10_1016_j_jmatprotec_2020_116897
crossref_primary_10_1089_3dp_2021_0143
crossref_primary_10_1038_s41598_019_41415_7
crossref_primary_10_1016_j_commatsci_2025_113797
crossref_primary_10_1016_j_addma_2022_102914
crossref_primary_10_1186_s10033_023_00863_z
crossref_primary_10_1080_17452759_2024_2375107
crossref_primary_10_1016_j_addma_2020_101704
crossref_primary_10_1016_j_msea_2019_138078
crossref_primary_10_1007_s40195_024_01679_z
crossref_primary_10_1016_j_powtec_2021_05_036
crossref_primary_10_1016_j_rcim_2018_11_007
crossref_primary_10_1108_RPJ_11_2022_0373
crossref_primary_10_3390_met11030418
crossref_primary_10_1016_j_matchar_2020_110358
crossref_primary_10_1038_s41598_020_73349_w
crossref_primary_10_1016_j_addma_2019_101030
crossref_primary_10_1134_S2075113324010106
crossref_primary_10_1016_j_jmatprotec_2024_118447
crossref_primary_10_1016_j_jmatprotec_2024_118448
crossref_primary_10_3390_met12071118
crossref_primary_10_1016_j_powtec_2023_118231
crossref_primary_10_3390_jmmp6060164
crossref_primary_10_1016_j_ijmachtools_2018_03_007
crossref_primary_10_3390_ma16237293
crossref_primary_10_1016_j_addma_2020_101497
crossref_primary_10_1016_j_addma_2020_101379
crossref_primary_10_1016_j_pmatsci_2020_100703
crossref_primary_10_1016_j_jallcom_2024_178032
crossref_primary_10_1016_j_addma_2017_12_008
crossref_primary_10_1016_j_addma_2020_101810
crossref_primary_10_1016_j_commatsci_2023_112576
crossref_primary_10_1016_j_jmapro_2023_03_051
crossref_primary_10_1016_j_matdes_2022_110505
crossref_primary_10_1177_00325899241304735
crossref_primary_10_1016_j_cirp_2020_04_092
crossref_primary_10_1016_j_cirpj_2021_07_004
crossref_primary_10_1080_17452759_2024_2366508
crossref_primary_10_1016_j_matdes_2020_108987
crossref_primary_10_1089_3dp_2023_0014
crossref_primary_10_1007_s00170_020_06330_6
crossref_primary_10_1007_s00170_022_10197_0
crossref_primary_10_1088_1757_899X_759_1_012023
crossref_primary_10_1080_17452759_2024_2361856
crossref_primary_10_1016_j_pmatsci_2022_101049
crossref_primary_10_1016_j_tsep_2023_101698
crossref_primary_10_1016_j_addma_2018_09_032
crossref_primary_10_1016_j_apmate_2023_100137
crossref_primary_10_1016_j_pmatsci_2021_100795
crossref_primary_10_1016_j_addma_2022_103242
crossref_primary_10_1016_j_addma_2024_104133
crossref_primary_10_1016_j_measurement_2024_114877
crossref_primary_10_1016_j_addma_2020_101249
crossref_primary_10_1007_s11666_025_01996_4
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125894
crossref_primary_10_3390_met11091425
crossref_primary_10_1016_j_addma_2020_101807
crossref_primary_10_1108_RPJ_10_2022_0366
crossref_primary_10_1063_1_5017236
crossref_primary_10_1016_j_addma_2022_102819
crossref_primary_10_1016_j_addma_2018_04_036
crossref_primary_10_1007_s00170_023_11075_z
crossref_primary_10_3390_mi13081366
crossref_primary_10_1016_j_ijplas_2023_103591
crossref_primary_10_1016_j_addma_2022_103112
crossref_primary_10_1007_s00170_020_05351_5
crossref_primary_10_1016_j_jallcom_2021_159789
crossref_primary_10_1007_s00170_024_13158_x
crossref_primary_10_1016_j_actamat_2018_12_027
crossref_primary_10_1080_09507116_2021_1979829
crossref_primary_10_1016_j_addma_2018_10_020
crossref_primary_10_1016_j_addma_2024_104365
crossref_primary_10_1016_j_addma_2018_11_023
crossref_primary_10_1016_j_addma_2020_101236
crossref_primary_10_1016_j_cma_2025_117985
crossref_primary_10_1002_nme_6546
crossref_primary_10_1016_j_jmapro_2025_03_033
crossref_primary_10_1002_advs_202203546
crossref_primary_10_1016_j_jmatprotec_2023_118074
crossref_primary_10_1016_j_scriptamat_2023_115806
crossref_primary_10_1016_j_matdes_2025_113594
crossref_primary_10_1016_j_jmatprotec_2018_11_019
crossref_primary_10_1088_2631_7990_ab3de9
crossref_primary_10_1088_1757_899X_861_1_012010
crossref_primary_10_1016_j_addma_2025_104910
crossref_primary_10_1016_j_powtec_2021_10_020
crossref_primary_10_1016_j_jmatprotec_2019_05_024
crossref_primary_10_1016_j_jmatprotec_2025_118995
crossref_primary_10_1016_j_msea_2022_144450
crossref_primary_10_1007_s11837_018_2964_3
crossref_primary_10_1016_j_addma_2020_101362
crossref_primary_10_1016_j_addma_2021_102178
crossref_primary_10_1016_j_jmatprotec_2021_117305
crossref_primary_10_1016_j_powtec_2020_04_031
crossref_primary_10_1016_j_matdes_2023_112386
crossref_primary_10_1061__ASCE_MT_1943_5533_0003833
crossref_primary_10_1016_j_matchar_2025_115357
crossref_primary_10_3390_mi15010104
crossref_primary_10_1016_j_addma_2019_100939
crossref_primary_10_1038_s41467_023_43371_3
crossref_primary_10_1007_s11837_025_07723_2
crossref_primary_10_1016_j_msea_2024_147725
crossref_primary_10_1088_1757_899X_1135_1_012018
crossref_primary_10_1016_j_optlastec_2019_03_012
crossref_primary_10_3390_met15060627
crossref_primary_10_1016_j_matdes_2020_109369
crossref_primary_10_1016_j_mtcomm_2023_106669
crossref_primary_10_1080_10408436_2022_2041396
crossref_primary_10_2351_7_0000061
crossref_primary_10_1016_j_jmapro_2021_11_037
crossref_primary_10_3390_app11073132
crossref_primary_10_1038_s41467_025_58373_6
crossref_primary_10_1103_PhysRevApplied_13_024057
crossref_primary_10_1007_s00170_019_04641_x
crossref_primary_10_1016_j_cma_2021_113707
crossref_primary_10_3390_met9101063
crossref_primary_10_1016_j_addlet_2025_100298
crossref_primary_10_1016_j_addma_2024_104067
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118473
crossref_primary_10_1016_j_actamat_2018_03_036
crossref_primary_10_1016_j_addma_2020_101334
crossref_primary_10_3390_coatings14050589
crossref_primary_10_1016_j_optlastec_2019_105678
crossref_primary_10_1134_S1061830924603271
crossref_primary_10_1016_j_addma_2020_101457
crossref_primary_10_1016_j_addma_2023_103953
crossref_primary_10_1016_j_cirp_2022_03_005
crossref_primary_10_1016_j_actamat_2020_09_071
crossref_primary_10_1080_2374068X_2020_1855960
crossref_primary_10_1016_j_optlastec_2024_111456
crossref_primary_10_1016_j_matdes_2019_107873
crossref_primary_10_1016_j_ijrmhm_2024_106556
crossref_primary_10_1063_5_0080724
crossref_primary_10_1016_j_msea_2019_138525
crossref_primary_10_1016_j_matdes_2020_109115
crossref_primary_10_1016_j_tsep_2023_102072
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_3390_app10010231
crossref_primary_10_1007_s11837_020_04020_y
crossref_primary_10_1016_j_matdes_2020_108706
crossref_primary_10_1016_j_optlastec_2018_08_012
crossref_primary_10_1016_j_addma_2021_102153
crossref_primary_10_3390_ma17040860
crossref_primary_10_1016_j_isatra_2021_03_001
crossref_primary_10_1016_j_addma_2019_100830
crossref_primary_10_1016_j_msea_2021_142311
crossref_primary_10_1007_s40192_021_00225_4
crossref_primary_10_1016_j_addma_2020_101342
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125219
crossref_primary_10_1016_j_addma_2021_101985
crossref_primary_10_1016_j_addma_2021_101982
crossref_primary_10_1007_s40436_022_00407_z
crossref_primary_10_1016_j_powtec_2022_118118
crossref_primary_10_1007_s11666_024_01763_x
crossref_primary_10_1007_s40436_021_00365_y
crossref_primary_10_1016_j_addma_2019_100958
crossref_primary_10_1016_j_addma_2021_101987
crossref_primary_10_1016_j_optlastec_2021_107665
crossref_primary_10_1016_j_crhy_2018_09_003
crossref_primary_10_1088_1361_6463_addad3
crossref_primary_10_29026_oea_2022_210058
crossref_primary_10_1016_j_applthermaleng_2025_125876
crossref_primary_10_1080_14686996_2019_1671140
crossref_primary_10_3390_met14060669
crossref_primary_10_1016_j_addma_2020_101690
crossref_primary_10_1016_j_mtcomm_2020_101294
crossref_primary_10_1038_s41467_022_28649_2
crossref_primary_10_1016_j_matdes_2021_110167
crossref_primary_10_1016_j_matdes_2022_111534
crossref_primary_10_1016_j_mtcomm_2025_113730
crossref_primary_10_3390_jmmp7040143
crossref_primary_10_1016_j_addma_2020_101675
crossref_primary_10_1016_j_addma_2020_101559
crossref_primary_10_1016_j_addma_2021_101953
crossref_primary_10_1016_j_addma_2022_102645
crossref_primary_10_2351_7_0000808
crossref_primary_10_1007_s40192_019_00157_0
crossref_primary_10_1016_j_addma_2025_104708
crossref_primary_10_1016_j_rineng_2024_103759
crossref_primary_10_6028_jres_126_013
crossref_primary_10_1038_s41598_020_58598_z
crossref_primary_10_1016_j_actamat_2025_120816
crossref_primary_10_1080_09506608_2020_1855381
crossref_primary_10_1016_j_addma_2021_102370
crossref_primary_10_1109_ACCESS_2022_3173317
crossref_primary_10_1016_j_ijfatigue_2024_108285
crossref_primary_10_1007_s00170_023_11067_z
crossref_primary_10_1007_s11665_022_06850_0
crossref_primary_10_1016_j_addma_2020_101320
crossref_primary_10_3390_met9070731
crossref_primary_10_1016_j_jmapro_2020_01_052
crossref_primary_10_1016_j_jmapro_2020_09_002
crossref_primary_10_1063_7_0001251
crossref_primary_10_1016_j_cirpj_2024_05_007
crossref_primary_10_1016_j_matdes_2018_07_002
crossref_primary_10_1016_j_msea_2019_138356
crossref_primary_10_1016_S1003_6326_24_66551_9
crossref_primary_10_1016_j_actamat_2021_116825
crossref_primary_10_1016_j_addma_2025_104838
crossref_primary_10_1080_17452759_2022_2052488
crossref_primary_10_1002_eng2_13020
crossref_primary_10_1016_j_euromechflu_2025_01_011
crossref_primary_10_1063_1_5143766
crossref_primary_10_1016_j_jmatprotec_2021_117332
crossref_primary_10_1088_1361_6501_ac0b6b
crossref_primary_10_1016_j_jmapro_2021_12_033
crossref_primary_10_1016_j_mtcomm_2025_112898
crossref_primary_10_3390_s21217179
crossref_primary_10_1016_j_addma_2022_103298
crossref_primary_10_1016_j_ijmachtools_2022_103887
crossref_primary_10_1016_j_matdes_2024_113420
crossref_primary_10_1016_j_addma_2019_100909
crossref_primary_10_1016_j_jmapro_2025_03_015
crossref_primary_10_1016_j_optlastec_2019_105914
crossref_primary_10_3390_jmmp9030101
crossref_primary_10_3390_app11072962
crossref_primary_10_1016_j_cma_2022_115422
crossref_primary_10_1007_s00170_023_12445_3
crossref_primary_10_1016_j_pmatsci_2024_101361
crossref_primary_10_1007_s00170_024_13553_4
crossref_primary_10_1016_j_pmatsci_2019_100578
crossref_primary_10_1007_s00170_022_08887_w
crossref_primary_10_1038_s41598_021_02240_z
crossref_primary_10_1002_adfm_202309304
crossref_primary_10_1016_j_addma_2023_103482
crossref_primary_10_1016_j_jmapro_2025_04_024
crossref_primary_10_3390_ma14216683
crossref_primary_10_1007_s00170_024_14798_9
crossref_primary_10_1016_j_addma_2024_104092
crossref_primary_10_3390_ma12223791
crossref_primary_10_1016_j_addma_2023_103484
crossref_primary_10_1016_j_cirp_2024_04_099
crossref_primary_10_52899_24141437_2025_03_355
crossref_primary_10_1016_j_ijmachtools_2021_103797
crossref_primary_10_1016_j_jmatprotec_2021_117328
crossref_primary_10_1016_j_addma_2021_102353
crossref_primary_10_1007_s40516_025_00313_9
crossref_primary_10_1016_j_msea_2023_145702
crossref_primary_10_1016_j_actamat_2025_121443
crossref_primary_10_1103_PhysRevApplied_14_064039
crossref_primary_10_1103_PhysRevX_9_021052
crossref_primary_10_3390_ma16062325
crossref_primary_10_3390_mi15070846
crossref_primary_10_1016_j_cossms_2020_100819
crossref_primary_10_1016_j_powtec_2022_117907
crossref_primary_10_3390_met11020205
crossref_primary_10_1109_TIM_2019_2912236
crossref_primary_10_1016_j_mtcomm_2021_102241
crossref_primary_10_1016_j_jmapro_2025_04_035
crossref_primary_10_1016_j_jmst_2024_07_047
crossref_primary_10_1016_j_apmt_2020_100650
crossref_primary_10_3389_fmech_2021_678076
crossref_primary_10_1016_j_jmatprotec_2021_117316
crossref_primary_10_1016_j_matdes_2021_110152
Cites_doi 10.1038/s41598-017-03761-2
10.1016/j.actamat.2017.05.061
10.1016/j.ijheatmasstransfer.2006.08.025
10.1364/AO.54.002477
10.1016/j.optlastec.2013.04.027
10.1088/0022-3727/39/4/014
10.1016/j.phpro.2010.08.065
10.1016/j.matdes.2015.11.085
10.1016/j.actamat.2016.02.014
10.1016/j.jmatprotec.2015.05.008
10.1063/1.1329668
10.1088/0022-3727/35/9/306
10.1364/OE.25.013539
10.1063/1.338142
10.1038/s41598-017-04237-z
10.1007/s11661-015-2882-8
10.1016/j.jmatprotec.2003.11.051
10.1016/j.actamat.2015.06.004
10.1179/1362171813Y.0000000143
10.1016/j.actamat.2016.05.017
10.1088/0022-3727/39/2/023
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright_xml – notice: 2017 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.actamat.2017.09.051
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 120
ExternalDocumentID 10_1016_j_actamat_2017_09_051
S1359645417308170
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
R2-
SEW
T9H
ZY4
~HD
ID FETCH-LOGICAL-c393t-835ccccb037b9c564c86d37c355e7d6b9f3b9f19a14e8e6f03c1b1c24ac0ecc33
ISICitedReferencesCount 432
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415776700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-6454
IngestDate Tue Nov 18 22:23:39 EST 2025
Sat Nov 29 07:04:27 EST 2025
Fri Feb 23 02:39:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element modelling (FEM)
Powder consolidation
High-speed imaging
In situ
Theory and modelling (kinetics, transport, diffusion)
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-835ccccb037b9c564c86d37c355e7d6b9f3b9f19a14e8e6f03c1b1c24ac0ecc33
OpenAccessLink https://dx.doi.org/10.1016/j.actamat.2017.09.051
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_actamat_2017_09_051
crossref_citationtrail_10_1016_j_actamat_2017_09_051
elsevier_sciencedirect_doi_10_1016_j_actamat_2017_09_051
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta materialia
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib4) 2016; 114
Gao, Kawahito, Kajii (bib26) 2017; 25
Kim, Farson (bib17) 2001; 89
Hu, Tsai (bib27) 2007; 50
Kim (bib21) 1975
Murphy, Tanaka, Yamamoto, Tashiro, Sato, Lowke (bib24) 2009; 42
Fabbro, Slimani, Doudet, Coste, Briand (bib32) 2006; 39
Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (bib2) 2015; 96
Renishaw plc (bib14) 2017
Ly, Rubenchik, Khairallah, Guss, Matthews (bib5) 2017; 7
Yan, Ge, Qian, Lin, Zhou, Liu, Lin, Wagner (bib9) 2017; 134
Gusarov, Smurov (bib28) 2010; 5
Wang, Read, Carter, Ward, Attallah (bib31) 2016
Menart, Malik (bib25) 2002; 35
Simonelli, Tuck, Aboulkhair, Maskery, Ashcroft, Wildman, Hague (bib30) 2015; 46
Bidare, Maier, Beck, Shephard, Moore (bib13) 2017; 16
Gibson, Rosen, Stucker (bib1) 2010
Beyer, Campbell, Ramsey, Galloway, Moore, McPherson (bib15) 2013; 18
Yan, Wen-Jing, Yue, Da-Wei, Yixiong (bib19) 2013; 25
Khairallah, Anderson, Rubenchik, King (bib8) 2016; 108
Murphy (bib10) 2010; 43
Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (bib11) 2004; 149
Masmoudi, Bolot, Coddet (bib12) 2015; 225
Boley, Khairallah, Rubenchik (bib33) 2015; 54
Mościcki, Hoffman, Szymański (bib18) 2006; 39
Cressault, Murphy, Teulet, Gleizes, Schnick (bib22) 2013; 46
Thijs, Van Humbeeck, Kempen, Yasa, Kruth, Rombouts (bib29) 2011
Bitharas, Campbell, Galloway, McPherson, Moore (bib16) 2016; 91
Grasso, Laguzza, Semeraro, Colosimo (bib3) 2016; 139
Gunenthiram, Peyre, Schneider, Dal, Coste, Fabbro (bib6) 2017; 29
Rockstroh, Mazumder (bib23) 1987; 61
Zhao, Fezzaa, Cunningham, Wen, Carlo, Chen, Rollett, Sun (bib7) 2017; 7
Hosseini Motlagh, Parvin, Jandaghi, Torkamany (bib20) 2013; 54
Yan (10.1016/j.actamat.2017.09.051_bib9) 2017; 134
Qiu (10.1016/j.actamat.2017.09.051_bib2) 2015; 96
Fabbro (10.1016/j.actamat.2017.09.051_bib32) 2006; 39
Hosseini Motlagh (10.1016/j.actamat.2017.09.051_bib20) 2013; 54
Grasso (10.1016/j.actamat.2017.09.051_bib3) 2016; 139
Gusarov (10.1016/j.actamat.2017.09.051_bib28) 2010; 5
Masmoudi (10.1016/j.actamat.2017.09.051_bib12) 2015; 225
Bitharas (10.1016/j.actamat.2017.09.051_bib16) 2016; 91
Matthews (10.1016/j.actamat.2017.09.051_bib4) 2016; 114
Menart (10.1016/j.actamat.2017.09.051_bib25) 2002; 35
Thijs (10.1016/j.actamat.2017.09.051_bib29) 2011
Gibson (10.1016/j.actamat.2017.09.051_bib1) 2010
Wang (10.1016/j.actamat.2017.09.051_bib31) 2016
Yan (10.1016/j.actamat.2017.09.051_bib19) 2013; 25
Zhao (10.1016/j.actamat.2017.09.051_bib7) 2017; 7
Boley (10.1016/j.actamat.2017.09.051_bib33) 2015; 54
Renishaw plc (10.1016/j.actamat.2017.09.051_bib14) 2017
Kim (10.1016/j.actamat.2017.09.051_bib21) 1975
Cressault (10.1016/j.actamat.2017.09.051_bib22) 2013; 46
Bidare (10.1016/j.actamat.2017.09.051_bib13) 2017; 16
Murphy (10.1016/j.actamat.2017.09.051_bib24) 2009; 42
Simonelli (10.1016/j.actamat.2017.09.051_bib30) 2015; 46
Kim (10.1016/j.actamat.2017.09.051_bib17) 2001; 89
Mościcki (10.1016/j.actamat.2017.09.051_bib18) 2006; 39
Beyer (10.1016/j.actamat.2017.09.051_bib15) 2013; 18
Khairallah (10.1016/j.actamat.2017.09.051_bib8) 2016; 108
Gao (10.1016/j.actamat.2017.09.051_bib26) 2017; 25
Ly (10.1016/j.actamat.2017.09.051_bib5) 2017; 7
Murphy (10.1016/j.actamat.2017.09.051_bib10) 2010; 43
Kruth (10.1016/j.actamat.2017.09.051_bib11) 2004; 149
Hu (10.1016/j.actamat.2017.09.051_bib27) 2007; 50
Gunenthiram (10.1016/j.actamat.2017.09.051_bib6) 2017; 29
Rockstroh (10.1016/j.actamat.2017.09.051_bib23) 1987; 61
References_xml – volume: 139
  year: 2016
  ident: bib3
  article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis
  publication-title: J. Manuf. Sci. Eng.
– start-page: 351
  year: 2016
  end-page: 358
  ident: bib31
  article-title: Defect formation and its mitigation in selective laser melting of high γ′ Ni-Base superalloys
  publication-title: Superalloys 2016
– year: 1975
  ident: bib21
  article-title: Thermophysical Properties of Stainless Steels
– volume: 134
  start-page: 324
  year: 2017
  end-page: 333
  ident: bib9
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
– volume: 225
  start-page: 122
  year: 2015
  end-page: 132
  ident: bib12
  article-title: Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process
  publication-title: J. Mater. Process. Technol.
– volume: 46
  year: 2013
  ident: bib22
  article-title: Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure
  publication-title: J. Phys. Appl. Phys.
– year: 2010
  ident: bib1
  article-title: Additive Manufacturing Technologies
– volume: 91
  start-page: 424
  year: 2016
  end-page: 431
  ident: bib16
  article-title: Visualisation of alternating shielding gas flow in GTAW
  publication-title: Mater. Des.
– volume: 46
  start-page: 3842
  year: 2015
  end-page: 3851
  ident: bib30
  article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V
  publication-title: Metall. Mater. Trans. A
– volume: 149
  start-page: 616
  year: 2004
  end-page: 622
  ident: bib11
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
– volume: 25
  start-page: 13539
  year: 2017
  ident: bib26
  article-title: Observation and understanding in laser welding of pure titanium at subatmospheric pressure
  publication-title: Opt. Expr.
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: bib8
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
– volume: 7
  start-page: 3602
  year: 2017
  ident: bib7
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
– volume: 7
  start-page: 4085
  year: 2017
  ident: bib5
  article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
– start-page: 297
  year: 2011
  end-page: 304
  ident: bib29
  article-title: Investigation on the inclusions in maraging steel produced by Selective Laser Melting
  publication-title: Innov. Dev. Virtual Phys. Prototyp
– volume: 25
  year: 2013
  ident: bib19
  article-title: Numerical and experimental study of the effect of groove on plasma plume during high power laser welding
  publication-title: J. Laser Appl.
– volume: 42
  year: 2009
  ident: bib24
  article-title: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour
  publication-title: J. Phys. Appl. Phys.
– volume: 5
  start-page: 381
  year: 2010
  end-page: 394
  ident: bib28
  article-title: Modeling the interaction of laser radiation with powder bed at selective laser melting
  publication-title: Phys. Procedia
– volume: 89
  start-page: 681
  year: 2001
  end-page: 688
  ident: bib17
  article-title: CO2 laser–plume interaction in materials processing
  publication-title: J. Appl. Phys.
– volume: 61
  start-page: 917
  year: 1987
  end-page: 923
  ident: bib23
  article-title: Spectroscopic studies of plasma during cw laser materials interaction
  publication-title: J. Appl. Phys.
– volume: 43
  year: 2010
  ident: bib10
  article-title: The effects of metal vapour in arc welding
  publication-title: J. Phys. Appl. Phys.
– volume: 18
  start-page: 652
  year: 2013
  end-page: 660
  ident: bib15
  article-title: Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage in MIG welding
  publication-title: Sci. Technol. Weld. Join.
– volume: 96
  start-page: 72
  year: 2015
  end-page: 79
  ident: bib2
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
– volume: 29
  year: 2017
  ident: bib6
  article-title: Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel
  publication-title: J. Laser Appl.
– volume: 39
  start-page: 394
  year: 2006
  ident: bib32
  article-title: Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding
  publication-title: J. Phys. Appl. Phys.
– volume: 16
  start-page: 177
  year: 2017
  end-page: 185
  ident: bib13
  article-title: An open-architecture metal powder bed fusion system for in-situ process measurements
  publication-title: Addit. Manuf.
– volume: 50
  start-page: 833
  year: 2007
  end-page: 846
  ident: bib27
  article-title: Heat and mass transfer in gas metal arc welding. Part I: the arc
  publication-title: Int. J. Heat. Mass Transf.
– volume: 114
  start-page: 33
  year: 2016
  end-page: 42
  ident: bib4
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
– volume: 54
  start-page: 2477
  year: 2015
  end-page: 2482
  ident: bib33
  article-title: Calculation of laser absorption by metal powders in additive manufacturing
  publication-title: Appl. Opt.
– volume: 54
  start-page: 191
  year: 2013
  end-page: 198
  ident: bib20
  article-title: The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding
  publication-title: Opt. Laser Technol.
– volume: 39
  start-page: 685
  year: 2006
  end-page: 692
  ident: bib18
  article-title: Modelling of plasma plume induced during laser welding
  publication-title: J. Phys. Appl. Phys.
– year: 2017
  ident: bib14
  article-title: Data Sheet: SS 316L-0407 Powder for Additive Manufacturing
– volume: 35
  start-page: 867
  year: 2002
  ident: bib25
  article-title: Net emission coefficients for argon-iron thermal plasmas
  publication-title: J. Phys. Appl. Phys.
– volume: 25
  year: 2013
  ident: 10.1016/j.actamat.2017.09.051_bib19
  article-title: Numerical and experimental study of the effect of groove on plasma plume during high power laser welding
  publication-title: J. Laser Appl.
– volume: 7
  start-page: 3602
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib7
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03761-2
– volume: 134
  start-page: 324
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib9
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.061
– year: 1975
  ident: 10.1016/j.actamat.2017.09.051_bib21
– volume: 50
  start-page: 833
  year: 2007
  ident: 10.1016/j.actamat.2017.09.051_bib27
  article-title: Heat and mass transfer in gas metal arc welding. Part I: the arc
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.08.025
– volume: 54
  start-page: 2477
  year: 2015
  ident: 10.1016/j.actamat.2017.09.051_bib33
  article-title: Calculation of laser absorption by metal powders in additive manufacturing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.002477
– volume: 29
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib6
  article-title: Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel
  publication-title: J. Laser Appl.
– volume: 16
  start-page: 177
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib13
  article-title: An open-architecture metal powder bed fusion system for in-situ process measurements
  publication-title: Addit. Manuf.
– start-page: 297
  year: 2011
  ident: 10.1016/j.actamat.2017.09.051_bib29
  article-title: Investigation on the inclusions in maraging steel produced by Selective Laser Melting
– volume: 54
  start-page: 191
  year: 2013
  ident: 10.1016/j.actamat.2017.09.051_bib20
  article-title: The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2013.04.027
– volume: 39
  start-page: 685
  year: 2006
  ident: 10.1016/j.actamat.2017.09.051_bib18
  article-title: Modelling of plasma plume induced during laser welding
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/39/4/014
– volume: 5
  start-page: 381
  year: 2010
  ident: 10.1016/j.actamat.2017.09.051_bib28
  article-title: Modeling the interaction of laser radiation with powder bed at selective laser melting
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.08.065
– volume: 43
  year: 2010
  ident: 10.1016/j.actamat.2017.09.051_bib10
  article-title: The effects of metal vapour in arc welding
  publication-title: J. Phys. Appl. Phys.
– volume: 91
  start-page: 424
  year: 2016
  ident: 10.1016/j.actamat.2017.09.051_bib16
  article-title: Visualisation of alternating shielding gas flow in GTAW
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.11.085
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.actamat.2017.09.051_bib8
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– volume: 46
  year: 2013
  ident: 10.1016/j.actamat.2017.09.051_bib22
  article-title: Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure
  publication-title: J. Phys. Appl. Phys.
– start-page: 351
  year: 2016
  ident: 10.1016/j.actamat.2017.09.051_bib31
  article-title: Defect formation and its mitigation in selective laser melting of high γ′ Ni-Base superalloys
– volume: 225
  start-page: 122
  year: 2015
  ident: 10.1016/j.actamat.2017.09.051_bib12
  article-title: Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.05.008
– volume: 89
  start-page: 681
  year: 2001
  ident: 10.1016/j.actamat.2017.09.051_bib17
  article-title: CO2 laser–plume interaction in materials processing
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1329668
– volume: 35
  start-page: 867
  year: 2002
  ident: 10.1016/j.actamat.2017.09.051_bib25
  article-title: Net emission coefficients for argon-iron thermal plasmas
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/35/9/306
– volume: 25
  start-page: 13539
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib26
  article-title: Observation and understanding in laser welding of pure titanium at subatmospheric pressure
  publication-title: Opt. Expr.
  doi: 10.1364/OE.25.013539
– volume: 139
  year: 2016
  ident: 10.1016/j.actamat.2017.09.051_bib3
  article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis
  publication-title: J. Manuf. Sci. Eng.
– year: 2010
  ident: 10.1016/j.actamat.2017.09.051_bib1
– year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib14
– volume: 61
  start-page: 917
  year: 1987
  ident: 10.1016/j.actamat.2017.09.051_bib23
  article-title: Spectroscopic studies of plasma during cw laser materials interaction
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.338142
– volume: 7
  start-page: 4085
  year: 2017
  ident: 10.1016/j.actamat.2017.09.051_bib5
  article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04237-z
– volume: 46
  start-page: 3842
  year: 2015
  ident: 10.1016/j.actamat.2017.09.051_bib30
  article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-2882-8
– volume: 149
  start-page: 616
  year: 2004
  ident: 10.1016/j.actamat.2017.09.051_bib11
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.11.051
– volume: 42
  year: 2009
  ident: 10.1016/j.actamat.2017.09.051_bib24
  article-title: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour
  publication-title: J. Phys. Appl. Phys.
– volume: 96
  start-page: 72
  year: 2015
  ident: 10.1016/j.actamat.2017.09.051_bib2
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.004
– volume: 18
  start-page: 652
  year: 2013
  ident: 10.1016/j.actamat.2017.09.051_bib15
  article-title: Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage in MIG welding
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171813Y.0000000143
– volume: 114
  start-page: 33
  year: 2016
  ident: 10.1016/j.actamat.2017.09.051_bib4
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.017
– volume: 39
  start-page: 394
  year: 2006
  ident: 10.1016/j.actamat.2017.09.051_bib32
  article-title: Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/39/2/023
SSID ssj0012740
Score 2.6738265
Snippet In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Finite element modelling (FEM)
High-speed imaging
In situ
Powder consolidation
Theory and modelling (kinetics, transport, diffusion)
Title Fluid and particle dynamics in laser powder bed fusion
URI https://dx.doi.org/10.1016/j.actamat.2017.09.051
Volume 142
WOSCitedRecordID wos000415776700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2453
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012740
  issn: 1359-6454
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQcIADWl4ClkU-cKtSnDiN7WOFQIAAIQSit8hxHCkIhapNgZ-_40fS8hCPA5UaVdPaTTJfJuPJzDcI7QuiI10IHcAPRBDnXAaZeeYK0JIyygoie7ZQ-JxdXvLBQFz5csWxbSfAqoq_vIjhr6oaZKBsUzr7A3W3k4IAPoPSYQtqh-23FH_8MClzV__vv-3kru28TX0Fb1mPOsPHZ0MikYG7WUzGjW4aNlpVyw54snZvy-mKvcylrwnrTmW1YXx2pqaV3kmXMH_dvWhl_bo2MXsbxblo5D7cEPKZcIOzkLQnAkMD9sqEOoYsbwR9H1t_Pw1tsdt7U-2iBvcAm1rCIZksO2YpZz0B7Stq7De3rDaRsMlRu0_9NKmZJiUiJaaufiFiPQG2bqF_ejQ4a58uwUrcVY_7Q5lWdh18uD8f-ywzfsjNH7TiFxC471S7iuZ0tYaWZ2gl11FiIYABAriBAG4ggMsKWwhgBwEMEMAOAhvo9vjo5vAk8P0xAkUFrQNwnhW8MkJZJlQviRVPcsoUuJCa5UkmCgrvUMgw1lwnBaEqzEIVxVIRuHIp3UTz1WOltxAGRw8MOUk0SOMs5jJmUcEiwmF4zkWxjeLmDKTKk8ebHiYP6aca2EbddtjQsad8NYA3pzf1LqBz7VKAzedDd376X3_R0hTgu2i-Hk30P7SonupyPNrzmPkPpSN8nQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+and+particle+dynamics+in+laser+powder+bed+fusion&rft.jtitle=Acta+materialia&rft.au=Bidare%2C+P.&rft.au=Bitharas%2C+I.&rft.au=Ward%2C+R.M.&rft.au=Attallah%2C+M.M.&rft.date=2018-01-01&rft.issn=1359-6454&rft.volume=142&rft.spage=107&rft.epage=120&rft_id=info:doi/10.1016%2Fj.actamat.2017.09.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2017_09_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon