Fluid and particle dynamics in laser powder bed fusion
In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans...
Uloženo v:
| Vydáno v: | Acta materialia Ročník 142; s. 107 - 120 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2018
|
| Témata: | |
| ISSN: | 1359-6454, 1873-2453 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans over several layers were imaged for the first time. The inclination of the laser plume was shifted from forwards to backwards by changing power and scan speed, resulting in different denudation regimes with implications to the heat, mass and momentum transfer of the process. As the build progressed, denudation became less severe than for a single powder layer, but the occurrence of sintered and fused powder agglomerates, which were affected by the plume, increased. Schlieren imaging enabled the visualisation of the Ar gas flow, which takes place in the atmosphere above the bed due to the plume, in addition to its interaction with affected particles. Numerical modelling was used to understand and quantify the observed flow behaviour, through the hydrodynamic treatment of the laser plume as a multi-component Ar-Fe plasma. These results promote the characterisation of fluid dynamic phenomena during the laser powder-bed fusion (LPBF) process, which constitutes a key factor in the prevention of defects in additively manufactured parts.
[Display omitted] |
|---|---|
| AbstractList | In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the interaction between the laser beam and the powder bed. The formation of denuded areas where the powder was removed during single line and island scans over several layers were imaged for the first time. The inclination of the laser plume was shifted from forwards to backwards by changing power and scan speed, resulting in different denudation regimes with implications to the heat, mass and momentum transfer of the process. As the build progressed, denudation became less severe than for a single powder layer, but the occurrence of sintered and fused powder agglomerates, which were affected by the plume, increased. Schlieren imaging enabled the visualisation of the Ar gas flow, which takes place in the atmosphere above the bed due to the plume, in addition to its interaction with affected particles. Numerical modelling was used to understand and quantify the observed flow behaviour, through the hydrodynamic treatment of the laser plume as a multi-component Ar-Fe plasma. These results promote the characterisation of fluid dynamic phenomena during the laser powder-bed fusion (LPBF) process, which constitutes a key factor in the prevention of defects in additively manufactured parts.
[Display omitted] |
| Author | Bitharas, I. Moore, A.J. Ward, R.M. Attallah, M.M. Bidare, P. |
| Author_xml | – sequence: 1 givenname: P. surname: Bidare fullname: Bidare, P. email: p.bidare@hw.ac.uk organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 2 givenname: I. surname: Bitharas fullname: Bitharas, I. email: i.bitharas@hw.ac.uk organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 3 givenname: R.M. surname: Ward fullname: Ward, R.M. organization: School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK – sequence: 4 givenname: M.M. surname: Attallah fullname: Attallah, M.M. organization: School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK – sequence: 5 givenname: A.J. surname: Moore fullname: Moore, A.J. email: a.moore@hw.ac.uk organization: Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK |
| BookMark | eNqFj01LAzEQhoNUsK3-BGH_wK7J5mM3eBApVoWCFz2H7GQWUra7JUmV_ntT6slLB4Z3Ls_LPAsyG6cRCblntGKUqYdtZSHZnU1VTVlTUV1Rya7InLUNL2sh-SzfXOpSCSluyCLGLaWsbgSdE7UeDt4VdnTF3obkYcDCHUe78xALPxaDjRiK_fTjcnToiv4Q_TTekuveDhHv_nJJvtYvn6u3cvPx-r563pTANU9lyyXk6ShvOg1SCWiV4w1wKbFxqtM9z8u0ZQJbVD3lwDoGtbBAEYDzJZHnXghTjAF7sw9-Z8PRMGpO8mZr_uTNSd5QbbJ85h7_ceCTTfnzFKwfLtJPZxqz2rfHYCJ4HAGdDwjJuMlfaPgFEVV7sw |
| CitedBy_id | crossref_primary_10_1016_j_addma_2020_101630 crossref_primary_10_1016_j_addma_2020_101512 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124378 crossref_primary_10_1007_s11661_018_5072_7 crossref_primary_10_1016_j_jmapro_2022_03_030 crossref_primary_10_1016_j_procir_2020_09_037 crossref_primary_10_1016_j_jmapro_2020_11_030 crossref_primary_10_1016_j_jallcom_2018_09_008 crossref_primary_10_1126_science_add4667 crossref_primary_10_1016_j_jallcom_2023_169215 crossref_primary_10_1016_j_tramat_2025_100084 crossref_primary_10_1108_RPJ_03_2023_0108 crossref_primary_10_1007_s10845_022_02055_3 crossref_primary_10_1007_s10845_023_02119_y crossref_primary_10_1016_j_actamat_2023_118824 crossref_primary_10_1016_j_addma_2020_101081 crossref_primary_10_1007_s00170_018_2495_7 crossref_primary_10_1016_j_addma_2022_103267 crossref_primary_10_1108_RPJ_12_2021_0351 crossref_primary_10_1016_j_addma_2019_100778 crossref_primary_10_1016_j_jallcom_2020_156300 crossref_primary_10_3390_ma13194423 crossref_primary_10_1016_j_addma_2021_102333 crossref_primary_10_3390_ma16020629 crossref_primary_10_1016_j_mtla_2024_102268 crossref_primary_10_1016_j_compositesb_2024_111727 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1126_science_aay7830 crossref_primary_10_1007_s00466_025_02642_0 crossref_primary_10_1016_j_addma_2022_103007 crossref_primary_10_1016_j_optlastec_2021_107289 crossref_primary_10_1016_j_addma_2020_101504 crossref_primary_10_1038_s41467_023_37285_3 crossref_primary_10_1016_j_matdes_2023_112317 crossref_primary_10_1016_j_procir_2022_08_105 crossref_primary_10_1038_s41467_018_03734_7 crossref_primary_10_1108_RPJ_02_2022_0047 crossref_primary_10_1107_S1600577518009554 crossref_primary_10_1080_17452759_2024_2416518 crossref_primary_10_1016_j_jmapro_2020_11_023 crossref_primary_10_1016_j_jmapro_2024_11_024 crossref_primary_10_1016_j_actamat_2022_117901 crossref_primary_10_1016_j_mtla_2020_100878 crossref_primary_10_1088_2631_7990_ad4e1d crossref_primary_10_3390_app11031213 crossref_primary_10_1016_j_jmrt_2025_06_161 crossref_primary_10_1080_17452759_2024_2446619 crossref_primary_10_1016_j_cjmeam_2022_100037 crossref_primary_10_1016_j_commatsci_2020_109648 crossref_primary_10_3390_app11052375 crossref_primary_10_1016_j_addma_2021_102461 crossref_primary_10_1016_j_jmapro_2023_05_048 crossref_primary_10_1016_j_addma_2023_103676 crossref_primary_10_1016_j_ijmachtools_2020_103686 crossref_primary_10_1016_j_actamat_2020_06_033 crossref_primary_10_1007_s40964_025_01075_8 crossref_primary_10_1038_s41467_019_10009_2 crossref_primary_10_1007_s00170_021_06855_4 crossref_primary_10_1007_s10853_024_10464_3 crossref_primary_10_1016_j_addlet_2022_100083 crossref_primary_10_1016_j_addma_2022_102984 crossref_primary_10_1016_j_matdes_2021_110107 crossref_primary_10_1016_j_powtec_2023_118927 crossref_primary_10_1007_s40964_019_00094_6 crossref_primary_10_3390_thermo5020016 crossref_primary_10_1109_TMECH_2021_3110818 crossref_primary_10_1016_j_addma_2020_101619 crossref_primary_10_1038_s41598_022_24828_9 crossref_primary_10_1088_2053_1591_ad0dd0 crossref_primary_10_1016_j_addma_2025_104970 crossref_primary_10_1007_s11595_025_3151_3 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127781 crossref_primary_10_1016_j_jmrt_2025_03_192 crossref_primary_10_1016_j_jmapro_2021_05_011 crossref_primary_10_1134_S2075113324010118 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_158 crossref_primary_10_1038_s41598_020_67249_2 crossref_primary_10_1016_j_optlastec_2021_107713 crossref_primary_10_1016_j_actamat_2022_118086 crossref_primary_10_1016_j_addlet_2021_100002 crossref_primary_10_1007_s11837_020_04291_5 crossref_primary_10_1016_j_matdes_2024_113211 crossref_primary_10_1103_RevModPhys_94_045002 crossref_primary_10_1088_1361_651X_ad7bd9 crossref_primary_10_1016_j_addma_2020_101722 crossref_primary_10_1016_j_optlastec_2022_108899 crossref_primary_10_1016_j_jma_2024_12_012 crossref_primary_10_1016_j_powtec_2022_117789 crossref_primary_10_1016_j_optlastec_2023_109247 crossref_primary_10_1007_s11831_021_09601_x crossref_primary_10_1016_j_addma_2025_104859 crossref_primary_10_1038_s41467_022_30667_z crossref_primary_10_1016_j_jmrt_2025_03_081 crossref_primary_10_1016_j_jmapro_2022_07_031 crossref_primary_10_1088_1361_6463_ab5900 crossref_primary_10_2351_7_0000321 crossref_primary_10_1016_j_ijfatigue_2019_06_008 crossref_primary_10_1016_j_jmrt_2025_03_085 crossref_primary_10_3390_mi14071351 crossref_primary_10_1016_j_apsusc_2022_152796 crossref_primary_10_1016_j_matdes_2022_111063 crossref_primary_10_1016_j_msea_2018_05_044 crossref_primary_10_1093_jrsssc_qlad074 crossref_primary_10_1038_s41598_022_07261_w crossref_primary_10_1002_adem_202200846 crossref_primary_10_1002_sia_7202 crossref_primary_10_3390_photonics10040411 crossref_primary_10_1016_j_optlastec_2025_113495 crossref_primary_10_1038_s41524_024_01418_z crossref_primary_10_1016_j_jmrt_2025_04_068 crossref_primary_10_1016_j_addma_2025_104797 crossref_primary_10_1016_j_addma_2021_102093 crossref_primary_10_1007_s40964_023_00491_y crossref_primary_10_3390_ma14216264 crossref_primary_10_1017_S1431927619013588 crossref_primary_10_1063_5_0205663 crossref_primary_10_1016_j_addma_2019_100978 crossref_primary_10_1016_j_matdes_2023_112069 crossref_primary_10_1016_j_jmatprotec_2020_116897 crossref_primary_10_1089_3dp_2021_0143 crossref_primary_10_1038_s41598_019_41415_7 crossref_primary_10_1016_j_commatsci_2025_113797 crossref_primary_10_1016_j_addma_2022_102914 crossref_primary_10_1186_s10033_023_00863_z crossref_primary_10_1080_17452759_2024_2375107 crossref_primary_10_1016_j_addma_2020_101704 crossref_primary_10_1016_j_msea_2019_138078 crossref_primary_10_1007_s40195_024_01679_z crossref_primary_10_1016_j_powtec_2021_05_036 crossref_primary_10_1016_j_rcim_2018_11_007 crossref_primary_10_1108_RPJ_11_2022_0373 crossref_primary_10_3390_met11030418 crossref_primary_10_1016_j_matchar_2020_110358 crossref_primary_10_1038_s41598_020_73349_w crossref_primary_10_1016_j_addma_2019_101030 crossref_primary_10_1134_S2075113324010106 crossref_primary_10_1016_j_jmatprotec_2024_118447 crossref_primary_10_1016_j_jmatprotec_2024_118448 crossref_primary_10_3390_met12071118 crossref_primary_10_1016_j_powtec_2023_118231 crossref_primary_10_3390_jmmp6060164 crossref_primary_10_1016_j_ijmachtools_2018_03_007 crossref_primary_10_3390_ma16237293 crossref_primary_10_1016_j_addma_2020_101497 crossref_primary_10_1016_j_addma_2020_101379 crossref_primary_10_1016_j_pmatsci_2020_100703 crossref_primary_10_1016_j_jallcom_2024_178032 crossref_primary_10_1016_j_addma_2017_12_008 crossref_primary_10_1016_j_addma_2020_101810 crossref_primary_10_1016_j_commatsci_2023_112576 crossref_primary_10_1016_j_jmapro_2023_03_051 crossref_primary_10_1016_j_matdes_2022_110505 crossref_primary_10_1177_00325899241304735 crossref_primary_10_1016_j_cirp_2020_04_092 crossref_primary_10_1016_j_cirpj_2021_07_004 crossref_primary_10_1080_17452759_2024_2366508 crossref_primary_10_1016_j_matdes_2020_108987 crossref_primary_10_1089_3dp_2023_0014 crossref_primary_10_1007_s00170_020_06330_6 crossref_primary_10_1007_s00170_022_10197_0 crossref_primary_10_1088_1757_899X_759_1_012023 crossref_primary_10_1080_17452759_2024_2361856 crossref_primary_10_1016_j_pmatsci_2022_101049 crossref_primary_10_1016_j_tsep_2023_101698 crossref_primary_10_1016_j_addma_2018_09_032 crossref_primary_10_1016_j_apmate_2023_100137 crossref_primary_10_1016_j_pmatsci_2021_100795 crossref_primary_10_1016_j_addma_2022_103242 crossref_primary_10_1016_j_addma_2024_104133 crossref_primary_10_1016_j_measurement_2024_114877 crossref_primary_10_1016_j_addma_2020_101249 crossref_primary_10_1007_s11666_025_01996_4 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125894 crossref_primary_10_3390_met11091425 crossref_primary_10_1016_j_addma_2020_101807 crossref_primary_10_1108_RPJ_10_2022_0366 crossref_primary_10_1063_1_5017236 crossref_primary_10_1016_j_addma_2022_102819 crossref_primary_10_1016_j_addma_2018_04_036 crossref_primary_10_1007_s00170_023_11075_z crossref_primary_10_3390_mi13081366 crossref_primary_10_1016_j_ijplas_2023_103591 crossref_primary_10_1016_j_addma_2022_103112 crossref_primary_10_1007_s00170_020_05351_5 crossref_primary_10_1016_j_jallcom_2021_159789 crossref_primary_10_1007_s00170_024_13158_x crossref_primary_10_1016_j_actamat_2018_12_027 crossref_primary_10_1080_09507116_2021_1979829 crossref_primary_10_1016_j_addma_2018_10_020 crossref_primary_10_1016_j_addma_2024_104365 crossref_primary_10_1016_j_addma_2018_11_023 crossref_primary_10_1016_j_addma_2020_101236 crossref_primary_10_1016_j_cma_2025_117985 crossref_primary_10_1002_nme_6546 crossref_primary_10_1016_j_jmapro_2025_03_033 crossref_primary_10_1002_advs_202203546 crossref_primary_10_1016_j_jmatprotec_2023_118074 crossref_primary_10_1016_j_scriptamat_2023_115806 crossref_primary_10_1016_j_matdes_2025_113594 crossref_primary_10_1016_j_jmatprotec_2018_11_019 crossref_primary_10_1088_2631_7990_ab3de9 crossref_primary_10_1088_1757_899X_861_1_012010 crossref_primary_10_1016_j_addma_2025_104910 crossref_primary_10_1016_j_powtec_2021_10_020 crossref_primary_10_1016_j_jmatprotec_2019_05_024 crossref_primary_10_1016_j_jmatprotec_2025_118995 crossref_primary_10_1016_j_msea_2022_144450 crossref_primary_10_1007_s11837_018_2964_3 crossref_primary_10_1016_j_addma_2020_101362 crossref_primary_10_1016_j_addma_2021_102178 crossref_primary_10_1016_j_jmatprotec_2021_117305 crossref_primary_10_1016_j_powtec_2020_04_031 crossref_primary_10_1016_j_matdes_2023_112386 crossref_primary_10_1061__ASCE_MT_1943_5533_0003833 crossref_primary_10_1016_j_matchar_2025_115357 crossref_primary_10_3390_mi15010104 crossref_primary_10_1016_j_addma_2019_100939 crossref_primary_10_1038_s41467_023_43371_3 crossref_primary_10_1007_s11837_025_07723_2 crossref_primary_10_1016_j_msea_2024_147725 crossref_primary_10_1088_1757_899X_1135_1_012018 crossref_primary_10_1016_j_optlastec_2019_03_012 crossref_primary_10_3390_met15060627 crossref_primary_10_1016_j_matdes_2020_109369 crossref_primary_10_1016_j_mtcomm_2023_106669 crossref_primary_10_1080_10408436_2022_2041396 crossref_primary_10_2351_7_0000061 crossref_primary_10_1016_j_jmapro_2021_11_037 crossref_primary_10_3390_app11073132 crossref_primary_10_1038_s41467_025_58373_6 crossref_primary_10_1103_PhysRevApplied_13_024057 crossref_primary_10_1007_s00170_019_04641_x crossref_primary_10_1016_j_cma_2021_113707 crossref_primary_10_3390_met9101063 crossref_primary_10_1016_j_addlet_2025_100298 crossref_primary_10_1016_j_addma_2024_104067 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118473 crossref_primary_10_1016_j_actamat_2018_03_036 crossref_primary_10_1016_j_addma_2020_101334 crossref_primary_10_3390_coatings14050589 crossref_primary_10_1016_j_optlastec_2019_105678 crossref_primary_10_1134_S1061830924603271 crossref_primary_10_1016_j_addma_2020_101457 crossref_primary_10_1016_j_addma_2023_103953 crossref_primary_10_1016_j_cirp_2022_03_005 crossref_primary_10_1016_j_actamat_2020_09_071 crossref_primary_10_1080_2374068X_2020_1855960 crossref_primary_10_1016_j_optlastec_2024_111456 crossref_primary_10_1016_j_matdes_2019_107873 crossref_primary_10_1016_j_ijrmhm_2024_106556 crossref_primary_10_1063_5_0080724 crossref_primary_10_1016_j_msea_2019_138525 crossref_primary_10_1016_j_matdes_2020_109115 crossref_primary_10_1016_j_tsep_2023_102072 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_3390_app10010231 crossref_primary_10_1007_s11837_020_04020_y crossref_primary_10_1016_j_matdes_2020_108706 crossref_primary_10_1016_j_optlastec_2018_08_012 crossref_primary_10_1016_j_addma_2021_102153 crossref_primary_10_3390_ma17040860 crossref_primary_10_1016_j_isatra_2021_03_001 crossref_primary_10_1016_j_addma_2019_100830 crossref_primary_10_1016_j_msea_2021_142311 crossref_primary_10_1007_s40192_021_00225_4 crossref_primary_10_1016_j_addma_2020_101342 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125219 crossref_primary_10_1016_j_addma_2021_101985 crossref_primary_10_1016_j_addma_2021_101982 crossref_primary_10_1007_s40436_022_00407_z crossref_primary_10_1016_j_powtec_2022_118118 crossref_primary_10_1007_s11666_024_01763_x crossref_primary_10_1007_s40436_021_00365_y crossref_primary_10_1016_j_addma_2019_100958 crossref_primary_10_1016_j_addma_2021_101987 crossref_primary_10_1016_j_optlastec_2021_107665 crossref_primary_10_1016_j_crhy_2018_09_003 crossref_primary_10_1088_1361_6463_addad3 crossref_primary_10_29026_oea_2022_210058 crossref_primary_10_1016_j_applthermaleng_2025_125876 crossref_primary_10_1080_14686996_2019_1671140 crossref_primary_10_3390_met14060669 crossref_primary_10_1016_j_addma_2020_101690 crossref_primary_10_1016_j_mtcomm_2020_101294 crossref_primary_10_1038_s41467_022_28649_2 crossref_primary_10_1016_j_matdes_2021_110167 crossref_primary_10_1016_j_matdes_2022_111534 crossref_primary_10_1016_j_mtcomm_2025_113730 crossref_primary_10_3390_jmmp7040143 crossref_primary_10_1016_j_addma_2020_101675 crossref_primary_10_1016_j_addma_2020_101559 crossref_primary_10_1016_j_addma_2021_101953 crossref_primary_10_1016_j_addma_2022_102645 crossref_primary_10_2351_7_0000808 crossref_primary_10_1007_s40192_019_00157_0 crossref_primary_10_1016_j_addma_2025_104708 crossref_primary_10_1016_j_rineng_2024_103759 crossref_primary_10_6028_jres_126_013 crossref_primary_10_1038_s41598_020_58598_z crossref_primary_10_1016_j_actamat_2025_120816 crossref_primary_10_1080_09506608_2020_1855381 crossref_primary_10_1016_j_addma_2021_102370 crossref_primary_10_1109_ACCESS_2022_3173317 crossref_primary_10_1016_j_ijfatigue_2024_108285 crossref_primary_10_1007_s00170_023_11067_z crossref_primary_10_1007_s11665_022_06850_0 crossref_primary_10_1016_j_addma_2020_101320 crossref_primary_10_3390_met9070731 crossref_primary_10_1016_j_jmapro_2020_01_052 crossref_primary_10_1016_j_jmapro_2020_09_002 crossref_primary_10_1063_7_0001251 crossref_primary_10_1016_j_cirpj_2024_05_007 crossref_primary_10_1016_j_matdes_2018_07_002 crossref_primary_10_1016_j_msea_2019_138356 crossref_primary_10_1016_S1003_6326_24_66551_9 crossref_primary_10_1016_j_actamat_2021_116825 crossref_primary_10_1016_j_addma_2025_104838 crossref_primary_10_1080_17452759_2022_2052488 crossref_primary_10_1002_eng2_13020 crossref_primary_10_1016_j_euromechflu_2025_01_011 crossref_primary_10_1063_1_5143766 crossref_primary_10_1016_j_jmatprotec_2021_117332 crossref_primary_10_1088_1361_6501_ac0b6b crossref_primary_10_1016_j_jmapro_2021_12_033 crossref_primary_10_1016_j_mtcomm_2025_112898 crossref_primary_10_3390_s21217179 crossref_primary_10_1016_j_addma_2022_103298 crossref_primary_10_1016_j_ijmachtools_2022_103887 crossref_primary_10_1016_j_matdes_2024_113420 crossref_primary_10_1016_j_addma_2019_100909 crossref_primary_10_1016_j_jmapro_2025_03_015 crossref_primary_10_1016_j_optlastec_2019_105914 crossref_primary_10_3390_jmmp9030101 crossref_primary_10_3390_app11072962 crossref_primary_10_1016_j_cma_2022_115422 crossref_primary_10_1007_s00170_023_12445_3 crossref_primary_10_1016_j_pmatsci_2024_101361 crossref_primary_10_1007_s00170_024_13553_4 crossref_primary_10_1016_j_pmatsci_2019_100578 crossref_primary_10_1007_s00170_022_08887_w crossref_primary_10_1038_s41598_021_02240_z crossref_primary_10_1002_adfm_202309304 crossref_primary_10_1016_j_addma_2023_103482 crossref_primary_10_1016_j_jmapro_2025_04_024 crossref_primary_10_3390_ma14216683 crossref_primary_10_1007_s00170_024_14798_9 crossref_primary_10_1016_j_addma_2024_104092 crossref_primary_10_3390_ma12223791 crossref_primary_10_1016_j_addma_2023_103484 crossref_primary_10_1016_j_cirp_2024_04_099 crossref_primary_10_52899_24141437_2025_03_355 crossref_primary_10_1016_j_ijmachtools_2021_103797 crossref_primary_10_1016_j_jmatprotec_2021_117328 crossref_primary_10_1016_j_addma_2021_102353 crossref_primary_10_1007_s40516_025_00313_9 crossref_primary_10_1016_j_msea_2023_145702 crossref_primary_10_1016_j_actamat_2025_121443 crossref_primary_10_1103_PhysRevApplied_14_064039 crossref_primary_10_1103_PhysRevX_9_021052 crossref_primary_10_3390_ma16062325 crossref_primary_10_3390_mi15070846 crossref_primary_10_1016_j_cossms_2020_100819 crossref_primary_10_1016_j_powtec_2022_117907 crossref_primary_10_3390_met11020205 crossref_primary_10_1109_TIM_2019_2912236 crossref_primary_10_1016_j_mtcomm_2021_102241 crossref_primary_10_1016_j_jmapro_2025_04_035 crossref_primary_10_1016_j_jmst_2024_07_047 crossref_primary_10_1016_j_apmt_2020_100650 crossref_primary_10_3389_fmech_2021_678076 crossref_primary_10_1016_j_jmatprotec_2021_117316 crossref_primary_10_1016_j_matdes_2021_110152 |
| Cites_doi | 10.1038/s41598-017-03761-2 10.1016/j.actamat.2017.05.061 10.1016/j.ijheatmasstransfer.2006.08.025 10.1364/AO.54.002477 10.1016/j.optlastec.2013.04.027 10.1088/0022-3727/39/4/014 10.1016/j.phpro.2010.08.065 10.1016/j.matdes.2015.11.085 10.1016/j.actamat.2016.02.014 10.1016/j.jmatprotec.2015.05.008 10.1063/1.1329668 10.1088/0022-3727/35/9/306 10.1364/OE.25.013539 10.1063/1.338142 10.1038/s41598-017-04237-z 10.1007/s11661-015-2882-8 10.1016/j.jmatprotec.2003.11.051 10.1016/j.actamat.2015.06.004 10.1179/1362171813Y.0000000143 10.1016/j.actamat.2016.05.017 10.1088/0022-3727/39/2/023 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s) |
| Copyright_xml | – notice: 2017 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.actamat.2017.09.051 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2453 |
| EndPage | 120 |
| ExternalDocumentID | 10_1016_j_actamat_2017_09_051 S1359645417308170 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB R2- SEW T9H ZY4 ~HD |
| ID | FETCH-LOGICAL-c393t-835ccccb037b9c564c86d37c355e7d6b9f3b9f19a14e8e6f03c1b1c24ac0ecc33 |
| ISICitedReferencesCount | 432 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415776700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-6454 |
| IngestDate | Tue Nov 18 22:23:39 EST 2025 Sat Nov 29 07:04:27 EST 2025 Fri Feb 23 02:39:24 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element modelling (FEM) Powder consolidation High-speed imaging In situ Theory and modelling (kinetics, transport, diffusion) |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c393t-835ccccb037b9c564c86d37c355e7d6b9f3b9f19a14e8e6f03c1b1c24ac0ecc33 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.actamat.2017.09.051 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_actamat_2017_09_051 crossref_citationtrail_10_1016_j_actamat_2017_09_051 elsevier_sciencedirect_doi_10_1016_j_actamat_2017_09_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 2018-01-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta materialia |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib4) 2016; 114 Gao, Kawahito, Kajii (bib26) 2017; 25 Kim, Farson (bib17) 2001; 89 Hu, Tsai (bib27) 2007; 50 Kim (bib21) 1975 Murphy, Tanaka, Yamamoto, Tashiro, Sato, Lowke (bib24) 2009; 42 Fabbro, Slimani, Doudet, Coste, Briand (bib32) 2006; 39 Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (bib2) 2015; 96 Renishaw plc (bib14) 2017 Ly, Rubenchik, Khairallah, Guss, Matthews (bib5) 2017; 7 Yan, Ge, Qian, Lin, Zhou, Liu, Lin, Wagner (bib9) 2017; 134 Gusarov, Smurov (bib28) 2010; 5 Wang, Read, Carter, Ward, Attallah (bib31) 2016 Menart, Malik (bib25) 2002; 35 Simonelli, Tuck, Aboulkhair, Maskery, Ashcroft, Wildman, Hague (bib30) 2015; 46 Bidare, Maier, Beck, Shephard, Moore (bib13) 2017; 16 Gibson, Rosen, Stucker (bib1) 2010 Beyer, Campbell, Ramsey, Galloway, Moore, McPherson (bib15) 2013; 18 Yan, Wen-Jing, Yue, Da-Wei, Yixiong (bib19) 2013; 25 Khairallah, Anderson, Rubenchik, King (bib8) 2016; 108 Murphy (bib10) 2010; 43 Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (bib11) 2004; 149 Masmoudi, Bolot, Coddet (bib12) 2015; 225 Boley, Khairallah, Rubenchik (bib33) 2015; 54 Mościcki, Hoffman, Szymański (bib18) 2006; 39 Cressault, Murphy, Teulet, Gleizes, Schnick (bib22) 2013; 46 Thijs, Van Humbeeck, Kempen, Yasa, Kruth, Rombouts (bib29) 2011 Bitharas, Campbell, Galloway, McPherson, Moore (bib16) 2016; 91 Grasso, Laguzza, Semeraro, Colosimo (bib3) 2016; 139 Gunenthiram, Peyre, Schneider, Dal, Coste, Fabbro (bib6) 2017; 29 Rockstroh, Mazumder (bib23) 1987; 61 Zhao, Fezzaa, Cunningham, Wen, Carlo, Chen, Rollett, Sun (bib7) 2017; 7 Hosseini Motlagh, Parvin, Jandaghi, Torkamany (bib20) 2013; 54 Yan (10.1016/j.actamat.2017.09.051_bib9) 2017; 134 Qiu (10.1016/j.actamat.2017.09.051_bib2) 2015; 96 Fabbro (10.1016/j.actamat.2017.09.051_bib32) 2006; 39 Hosseini Motlagh (10.1016/j.actamat.2017.09.051_bib20) 2013; 54 Grasso (10.1016/j.actamat.2017.09.051_bib3) 2016; 139 Gusarov (10.1016/j.actamat.2017.09.051_bib28) 2010; 5 Masmoudi (10.1016/j.actamat.2017.09.051_bib12) 2015; 225 Bitharas (10.1016/j.actamat.2017.09.051_bib16) 2016; 91 Matthews (10.1016/j.actamat.2017.09.051_bib4) 2016; 114 Menart (10.1016/j.actamat.2017.09.051_bib25) 2002; 35 Thijs (10.1016/j.actamat.2017.09.051_bib29) 2011 Gibson (10.1016/j.actamat.2017.09.051_bib1) 2010 Wang (10.1016/j.actamat.2017.09.051_bib31) 2016 Yan (10.1016/j.actamat.2017.09.051_bib19) 2013; 25 Zhao (10.1016/j.actamat.2017.09.051_bib7) 2017; 7 Boley (10.1016/j.actamat.2017.09.051_bib33) 2015; 54 Renishaw plc (10.1016/j.actamat.2017.09.051_bib14) 2017 Kim (10.1016/j.actamat.2017.09.051_bib21) 1975 Cressault (10.1016/j.actamat.2017.09.051_bib22) 2013; 46 Bidare (10.1016/j.actamat.2017.09.051_bib13) 2017; 16 Murphy (10.1016/j.actamat.2017.09.051_bib24) 2009; 42 Simonelli (10.1016/j.actamat.2017.09.051_bib30) 2015; 46 Kim (10.1016/j.actamat.2017.09.051_bib17) 2001; 89 Mościcki (10.1016/j.actamat.2017.09.051_bib18) 2006; 39 Beyer (10.1016/j.actamat.2017.09.051_bib15) 2013; 18 Khairallah (10.1016/j.actamat.2017.09.051_bib8) 2016; 108 Gao (10.1016/j.actamat.2017.09.051_bib26) 2017; 25 Ly (10.1016/j.actamat.2017.09.051_bib5) 2017; 7 Murphy (10.1016/j.actamat.2017.09.051_bib10) 2010; 43 Kruth (10.1016/j.actamat.2017.09.051_bib11) 2004; 149 Hu (10.1016/j.actamat.2017.09.051_bib27) 2007; 50 Gunenthiram (10.1016/j.actamat.2017.09.051_bib6) 2017; 29 Rockstroh (10.1016/j.actamat.2017.09.051_bib23) 1987; 61 |
| References_xml | – volume: 139 year: 2016 ident: bib3 article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis publication-title: J. Manuf. Sci. Eng. – start-page: 351 year: 2016 end-page: 358 ident: bib31 article-title: Defect formation and its mitigation in selective laser melting of high γ′ Ni-Base superalloys publication-title: Superalloys 2016 – year: 1975 ident: bib21 article-title: Thermophysical Properties of Stainless Steels – volume: 134 start-page: 324 year: 2017 end-page: 333 ident: bib9 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. – volume: 225 start-page: 122 year: 2015 end-page: 132 ident: bib12 article-title: Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process publication-title: J. Mater. Process. Technol. – volume: 46 year: 2013 ident: bib22 article-title: Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure publication-title: J. Phys. Appl. Phys. – year: 2010 ident: bib1 article-title: Additive Manufacturing Technologies – volume: 91 start-page: 424 year: 2016 end-page: 431 ident: bib16 article-title: Visualisation of alternating shielding gas flow in GTAW publication-title: Mater. Des. – volume: 46 start-page: 3842 year: 2015 end-page: 3851 ident: bib30 article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V publication-title: Metall. Mater. Trans. A – volume: 149 start-page: 616 year: 2004 end-page: 622 ident: bib11 article-title: Selective laser melting of iron-based powder publication-title: J. Mater. Process. Technol. – volume: 25 start-page: 13539 year: 2017 ident: bib26 article-title: Observation and understanding in laser welding of pure titanium at subatmospheric pressure publication-title: Opt. Expr. – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: bib8 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. – volume: 7 start-page: 3602 year: 2017 ident: bib7 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. – volume: 7 start-page: 4085 year: 2017 ident: bib5 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci. Rep. – start-page: 297 year: 2011 end-page: 304 ident: bib29 article-title: Investigation on the inclusions in maraging steel produced by Selective Laser Melting publication-title: Innov. Dev. Virtual Phys. Prototyp – volume: 25 year: 2013 ident: bib19 article-title: Numerical and experimental study of the effect of groove on plasma plume during high power laser welding publication-title: J. Laser Appl. – volume: 42 year: 2009 ident: bib24 article-title: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour publication-title: J. Phys. Appl. Phys. – volume: 5 start-page: 381 year: 2010 end-page: 394 ident: bib28 article-title: Modeling the interaction of laser radiation with powder bed at selective laser melting publication-title: Phys. Procedia – volume: 89 start-page: 681 year: 2001 end-page: 688 ident: bib17 article-title: CO2 laser–plume interaction in materials processing publication-title: J. Appl. Phys. – volume: 61 start-page: 917 year: 1987 end-page: 923 ident: bib23 article-title: Spectroscopic studies of plasma during cw laser materials interaction publication-title: J. Appl. Phys. – volume: 43 year: 2010 ident: bib10 article-title: The effects of metal vapour in arc welding publication-title: J. Phys. Appl. Phys. – volume: 18 start-page: 652 year: 2013 end-page: 660 ident: bib15 article-title: Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage in MIG welding publication-title: Sci. Technol. Weld. Join. – volume: 96 start-page: 72 year: 2015 end-page: 79 ident: bib2 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. – volume: 29 year: 2017 ident: bib6 article-title: Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel publication-title: J. Laser Appl. – volume: 39 start-page: 394 year: 2006 ident: bib32 article-title: Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding publication-title: J. Phys. Appl. Phys. – volume: 16 start-page: 177 year: 2017 end-page: 185 ident: bib13 article-title: An open-architecture metal powder bed fusion system for in-situ process measurements publication-title: Addit. Manuf. – volume: 50 start-page: 833 year: 2007 end-page: 846 ident: bib27 article-title: Heat and mass transfer in gas metal arc welding. Part I: the arc publication-title: Int. J. Heat. Mass Transf. – volume: 114 start-page: 33 year: 2016 end-page: 42 ident: bib4 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. – volume: 54 start-page: 2477 year: 2015 end-page: 2482 ident: bib33 article-title: Calculation of laser absorption by metal powders in additive manufacturing publication-title: Appl. Opt. – volume: 54 start-page: 191 year: 2013 end-page: 198 ident: bib20 article-title: The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding publication-title: Opt. Laser Technol. – volume: 39 start-page: 685 year: 2006 end-page: 692 ident: bib18 article-title: Modelling of plasma plume induced during laser welding publication-title: J. Phys. Appl. Phys. – year: 2017 ident: bib14 article-title: Data Sheet: SS 316L-0407 Powder for Additive Manufacturing – volume: 35 start-page: 867 year: 2002 ident: bib25 article-title: Net emission coefficients for argon-iron thermal plasmas publication-title: J. Phys. Appl. Phys. – volume: 25 year: 2013 ident: 10.1016/j.actamat.2017.09.051_bib19 article-title: Numerical and experimental study of the effect of groove on plasma plume during high power laser welding publication-title: J. Laser Appl. – volume: 7 start-page: 3602 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib7 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. doi: 10.1038/s41598-017-03761-2 – volume: 134 start-page: 324 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib9 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.061 – year: 1975 ident: 10.1016/j.actamat.2017.09.051_bib21 – volume: 50 start-page: 833 year: 2007 ident: 10.1016/j.actamat.2017.09.051_bib27 article-title: Heat and mass transfer in gas metal arc welding. Part I: the arc publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.08.025 – volume: 54 start-page: 2477 year: 2015 ident: 10.1016/j.actamat.2017.09.051_bib33 article-title: Calculation of laser absorption by metal powders in additive manufacturing publication-title: Appl. Opt. doi: 10.1364/AO.54.002477 – volume: 29 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib6 article-title: Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel publication-title: J. Laser Appl. – volume: 16 start-page: 177 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib13 article-title: An open-architecture metal powder bed fusion system for in-situ process measurements publication-title: Addit. Manuf. – start-page: 297 year: 2011 ident: 10.1016/j.actamat.2017.09.051_bib29 article-title: Investigation on the inclusions in maraging steel produced by Selective Laser Melting – volume: 54 start-page: 191 year: 2013 ident: 10.1016/j.actamat.2017.09.051_bib20 article-title: The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2013.04.027 – volume: 39 start-page: 685 year: 2006 ident: 10.1016/j.actamat.2017.09.051_bib18 article-title: Modelling of plasma plume induced during laser welding publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/39/4/014 – volume: 5 start-page: 381 year: 2010 ident: 10.1016/j.actamat.2017.09.051_bib28 article-title: Modeling the interaction of laser radiation with powder bed at selective laser melting publication-title: Phys. Procedia doi: 10.1016/j.phpro.2010.08.065 – volume: 43 year: 2010 ident: 10.1016/j.actamat.2017.09.051_bib10 article-title: The effects of metal vapour in arc welding publication-title: J. Phys. Appl. Phys. – volume: 91 start-page: 424 year: 2016 ident: 10.1016/j.actamat.2017.09.051_bib16 article-title: Visualisation of alternating shielding gas flow in GTAW publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.11.085 – volume: 108 start-page: 36 year: 2016 ident: 10.1016/j.actamat.2017.09.051_bib8 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – volume: 46 year: 2013 ident: 10.1016/j.actamat.2017.09.051_bib22 article-title: Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure publication-title: J. Phys. Appl. Phys. – start-page: 351 year: 2016 ident: 10.1016/j.actamat.2017.09.051_bib31 article-title: Defect formation and its mitigation in selective laser melting of high γ′ Ni-Base superalloys – volume: 225 start-page: 122 year: 2015 ident: 10.1016/j.actamat.2017.09.051_bib12 article-title: Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.05.008 – volume: 89 start-page: 681 year: 2001 ident: 10.1016/j.actamat.2017.09.051_bib17 article-title: CO2 laser–plume interaction in materials processing publication-title: J. Appl. Phys. doi: 10.1063/1.1329668 – volume: 35 start-page: 867 year: 2002 ident: 10.1016/j.actamat.2017.09.051_bib25 article-title: Net emission coefficients for argon-iron thermal plasmas publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/35/9/306 – volume: 25 start-page: 13539 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib26 article-title: Observation and understanding in laser welding of pure titanium at subatmospheric pressure publication-title: Opt. Expr. doi: 10.1364/OE.25.013539 – volume: 139 year: 2016 ident: 10.1016/j.actamat.2017.09.051_bib3 article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis publication-title: J. Manuf. Sci. Eng. – year: 2010 ident: 10.1016/j.actamat.2017.09.051_bib1 – year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib14 – volume: 61 start-page: 917 year: 1987 ident: 10.1016/j.actamat.2017.09.051_bib23 article-title: Spectroscopic studies of plasma during cw laser materials interaction publication-title: J. Appl. Phys. doi: 10.1063/1.338142 – volume: 7 start-page: 4085 year: 2017 ident: 10.1016/j.actamat.2017.09.051_bib5 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci. Rep. doi: 10.1038/s41598-017-04237-z – volume: 46 start-page: 3842 year: 2015 ident: 10.1016/j.actamat.2017.09.051_bib30 article-title: A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-015-2882-8 – volume: 149 start-page: 616 year: 2004 ident: 10.1016/j.actamat.2017.09.051_bib11 article-title: Selective laser melting of iron-based powder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.051 – volume: 42 year: 2009 ident: 10.1016/j.actamat.2017.09.051_bib24 article-title: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour publication-title: J. Phys. Appl. Phys. – volume: 96 start-page: 72 year: 2015 ident: 10.1016/j.actamat.2017.09.051_bib2 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.004 – volume: 18 start-page: 652 year: 2013 ident: 10.1016/j.actamat.2017.09.051_bib15 article-title: Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage in MIG welding publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171813Y.0000000143 – volume: 114 start-page: 33 year: 2016 ident: 10.1016/j.actamat.2017.09.051_bib4 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.017 – volume: 39 start-page: 394 year: 2006 ident: 10.1016/j.actamat.2017.09.051_bib32 article-title: Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/39/2/023 |
| SSID | ssj0012740 |
| Score | 2.6738265 |
| Snippet | In this work, we employ a combination of high-speed imaging and schlieren imaging, as well as multiphysics modelling, to elucidate the effects of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107 |
| SubjectTerms | Finite element modelling (FEM) High-speed imaging In situ Powder consolidation Theory and modelling (kinetics, transport, diffusion) |
| Title | Fluid and particle dynamics in laser powder bed fusion |
| URI | https://dx.doi.org/10.1016/j.actamat.2017.09.051 |
| Volume | 142 |
| WOSCitedRecordID | wos000415776700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQcIADWl4ClkU-cKtSnDiN7WOFQIAAIQSit8hxHCkIhapNgZ-_40fS8hCPA5UaVdPaTTJfJuPJzDcI7QuiI10IHcAPRBDnXAaZeeYK0JIyygoie7ZQ-JxdXvLBQFz5csWxbSfAqoq_vIjhr6oaZKBsUzr7A3W3k4IAPoPSYQtqh-23FH_8MClzV__vv-3kru28TX0Fb1mPOsPHZ0MikYG7WUzGjW4aNlpVyw54snZvy-mKvcylrwnrTmW1YXx2pqaV3kmXMH_dvWhl_bo2MXsbxblo5D7cEPKZcIOzkLQnAkMD9sqEOoYsbwR9H1t_Pw1tsdt7U-2iBvcAm1rCIZksO2YpZz0B7Stq7De3rDaRsMlRu0_9NKmZJiUiJaaufiFiPQG2bqF_ejQ4a58uwUrcVY_7Q5lWdh18uD8f-ywzfsjNH7TiFxC471S7iuZ0tYaWZ2gl11FiIYABAriBAG4ggMsKWwhgBwEMEMAOAhvo9vjo5vAk8P0xAkUFrQNwnhW8MkJZJlQviRVPcsoUuJCa5UkmCgrvUMgw1lwnBaEqzEIVxVIRuHIp3UTz1WOltxAGRw8MOUk0SOMs5jJmUcEiwmF4zkWxjeLmDKTKk8ebHiYP6aca2EbddtjQsad8NYA3pzf1LqBz7VKAzedDd376X3_R0hTgu2i-Hk30P7SonupyPNrzmPkPpSN8nQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+and+particle+dynamics+in+laser+powder+bed+fusion&rft.jtitle=Acta+materialia&rft.au=Bidare%2C+P.&rft.au=Bitharas%2C+I.&rft.au=Ward%2C+R.M.&rft.au=Attallah%2C+M.M.&rft.date=2018-01-01&rft.issn=1359-6454&rft.volume=142&rft.spage=107&rft.epage=120&rft_id=info:doi/10.1016%2Fj.actamat.2017.09.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2017_09_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |