A real coded genetic algorithm for solving integer and mixed integer optimization problems

In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 212; číslo 2; s. 505 - 518
Hlavní autoři: Deep, Kusum, Singh, Krishna Pratap, Kansal, M.L., Mohan, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.06.2009
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computation 188 (2007) 895–912; K. Deep, M. Thakur, A new mutation operator for real coded genetic algorithms, Applied Mathematics and Computation 193 (2007) 211–230]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. Performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of genetic algorithm and also with random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2009.02.044