A real coded genetic algorithm for solving integer and mixed integer optimization problems

In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 212; no. 2; pp. 505 - 518
Main Authors: Deep, Kusum, Singh, Krishna Pratap, Kansal, M.L., Mohan, C.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 15.06.2009
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computation 188 (2007) 895–912; K. Deep, M. Thakur, A new mutation operator for real coded genetic algorithms, Applied Mathematics and Computation 193 (2007) 211–230]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. Performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of genetic algorithm and also with random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2009.02.044