VIPurPCA: Visualizing and Propagating Uncertainty in Principal Component Analysis

Variables obtained by experimental measurements or statistical inference typically carry uncertainties. When an algorithm uses such quantities as input variables, this uncertainty should propagate to the algorithm's output. Concretely, we consider the classic notion of principal component analy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on visualization and computer graphics Ročník 30; číslo 4; s. 2011 - 2022
Hlavní autoři: Zabel, Susanne, Hennig, Philipp, Nieselt, Kay
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Variables obtained by experimental measurements or statistical inference typically carry uncertainties. When an algorithm uses such quantities as input variables, this uncertainty should propagate to the algorithm's output. Concretely, we consider the classic notion of principal component analysis (PCA): If it is applied to a finite data matrix containing imperfect (i.e., uncertain) multidimensional measurements, its output-a lower-dimensional representation-is itself subject to uncertainty. We demonstrate that this uncertainty can be approximated by appropriate linearization of the algorithm's nonlinear functionality, using automatic differentiation. By itself, however, this structured, uncertain output is difficult to interpret for users. We provide an animation method that effectively visualizes the uncertainty of the lower dimensional map. Implemented as an open-source software package, it allows researchers to assess the reliability of PCA embeddings.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1077-2626
1941-0506
1941-0506
DOI:10.1109/TVCG.2023.3345532