VIPurPCA: Visualizing and Propagating Uncertainty in Principal Component Analysis
Variables obtained by experimental measurements or statistical inference typically carry uncertainties. When an algorithm uses such quantities as input variables, this uncertainty should propagate to the algorithm's output. Concretely, we consider the classic notion of principal component analy...
Uložené v:
| Vydané v: | IEEE transactions on visualization and computer graphics Ročník 30; číslo 4; s. 2011 - 2022 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Variables obtained by experimental measurements or statistical inference typically carry uncertainties. When an algorithm uses such quantities as input variables, this uncertainty should propagate to the algorithm's output. Concretely, we consider the classic notion of principal component analysis (PCA): If it is applied to a finite data matrix containing imperfect (i.e., uncertain) multidimensional measurements, its output-a lower-dimensional representation-is itself subject to uncertainty. We demonstrate that this uncertainty can be approximated by appropriate linearization of the algorithm's nonlinear functionality, using automatic differentiation. By itself, however, this structured, uncertain output is difficult to interpret for users. We provide an animation method that effectively visualizes the uncertainty of the lower dimensional map. Implemented as an open-source software package, it allows researchers to assess the reliability of PCA embeddings. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1077-2626 1941-0506 1941-0506 |
| DOI: | 10.1109/TVCG.2023.3345532 |