Limit transition between hypergeometric functions of type BC and type A

Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Compositio mathematica Ročník 149; číslo 8; s. 1381 - 1400
Hlavní autoři: Rösler, Margit, Koornwinder, Tom, Voit, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, UK London Mathematical Society 01.08.2013
Cambridge University Press
Témata:
ISSN:0010-437X, 1570-5846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X13007045