A New Fast Recursive Matrix Multiplication Algorithm
A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4 μ with μ = 2 q −1 ( q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorith...
Uloženo v:
| Vydáno v: | Cybernetics and systems analysis Ročník 55; číslo 4; s. 547 - 551 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1060-0396, 1573-8337 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new recursive algorithm is proposed for multiplying matrices of order
n
= 2
q
(
q
> 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order
n
= 4
μ
with
μ
= 2
q
−1
(
q
> 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes the multiplicative complexity equal to
W
m
≈ 0.932
n
2.807
multiplication operations at recursive level
d
= log
2
n
−3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1060-0396 1573-8337 |
| DOI: | 10.1007/s10559-019-00163-2 |