Numerical investigation of a 3D hybrid high-order method for the indefinite time-harmonic Maxwell problem
Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to the broader family of Discontinuous Sketetal methods. Other well known members of the same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method, the nonconforming Virtual Element Method...
Uložené v:
| Vydané v: | Finite elements in analysis and design Ročník 233; s. 104124 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.06.2024
|
| Predmet: | |
| ISSN: | 0168-874X, 1872-6925, 1872-6925 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to the broader family of Discontinuous Sketetal methods. Other well known members of the same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method, the nonconforming Virtual Element Method (ncVEM) and the Weak Galerkin (WG) method. HHO provides various valuable assets such as simple construction, support for fully-polyhedral meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and straightforward support for hp-refinement. In this work we propose an HHO method for the indefinite time-harmonic Maxwell problem and we evaluate its numerical performance. In addition, we present the validation of the method in two different settings: a resonant cavity with Dirichlet conditions and a parallel plate waveguide problem with a total/scattered field decomposition and a plane-wave boundary condition. Finally, as a realistic application, we demonstrate HHO used on the study of the return loss in a waveguide mode converter. |
|---|---|
| Bibliografia: | scopus-id:2-s2.0-85184023147 |
| ISSN: | 0168-874X 1872-6925 1872-6925 |
| DOI: | 10.1016/j.finel.2024.104124 |