Fast Selection of Blur Coefficients in a Multidimensional Nonparametric Pattern Recognition Algorithm

A fast procedure is proposed for choosing the blur coefficients of kernel functions in a multidimensional nonparametric estimation of the equation of a decision surface for a two-alternative problem of pattern recognition. The decision classification rule meets the maximum likelihood criterion. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement techniques Ročník 62; číslo 8; s. 665 - 672
Hlavní autoři: Lapko, A. V., Lapko, V. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2019
Springer
Springer Nature B.V
Témata:
ISSN:0543-1972, 1573-8906
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fast procedure is proposed for choosing the blur coefficients of kernel functions in a multidimensional nonparametric estimation of the equation of a decision surface for a two-alternative problem of pattern recognition. The decision classification rule meets the maximum likelihood criterion. The theoretical basis of the procedure under consideration is the result of a study of the asymptotic properties of multidimensional nonparametric estimates of the decision function in the problem of recognizing patterns and probability densities of the distribution of random variables in classes. The possibility of using fast procedures for choosing the blur coefficients of kernel estimates of probability densities in the synthesis of non-parametric estimates of the equation of the decision surface between classes is substantiated. The effectiveness of the proposed approach is confirmed by the results of computational experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0543-1972
1573-8906
DOI:10.1007/s11018-019-01676-0