Exact Three-Point Scheme and Schemes of High Order of Accuracy for a Forth-Order Ordinary Differential Equation

We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis Jg. 56; H. 4; S. 566 - 576
1. Verfasser: Prikazchikov, V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2020
Springer
Springer Nature B.V
Schlagworte:
ISSN:1060-0396, 1573-8337
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme, the principle of superposition of solutions was used. Partial sums of the functional series representing independent solutions provide schemes of arbitrary order of accuracy for the boundary-value poblem and for the spectral one. To solve systems of linear equations, the modified tridiagonal matrix algorithm is proposed.
AbstractList We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme, the principle of superposition of solutions was used. Partial sums of the functional series representing independent solutions provide schemes of arbitrary order of accuracy for the boundary-value poblem and for the spectral one. To solve systems of linear equations, the modified tridiagonal matrix algorithm is proposed.
We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme, the principle of superposition of solutions was used. Partial sums of the functional series representing independent solutions provide schemes of arbitrary order of accuracy for the boundary-value poblem and for the spectral one. To solve systems of linear equations, the modified tridiagonal matrix algorithm is proposed. Keywords: forth-order differential equation, boundary-value problem, spectral problem, Cauchy problem, linearly independent solutions, Wronskian, superposition of solutions, Green function, grid method, exact scheme, scheme of high order of accuracy, functional series, system of linear algebraic equations, tridiagonal matrix algorithm.
Audience Academic
Author Prikazchikov, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Prikazchikov
  fullname: Prikazchikov, V.
  email: viktorprikazchikov@gmail.com
  organization: Taras Shevchenko National University of Kyiv
BookMark eNp9kUFLHTEQx5dioWr7BXoK9NTD2kmym90cH_ZZBcFS7Tmk2cl7kfcSTbKg376jKxR7kMBkkvx_GWb-R81BTBGb5jOHEw4wfCsc-l63IKAFEINsxbvmkPeUjFIOB5SDoiep1YfmqJRbAJAwjIdNWj9YV9nNNiO2P1OIlV27Le6R2Ti9pIUlz87DZsuu8oT56bRybs7WPTKfMrPsLOW6bZdXiiHa_Mi-B-8xY6zB7tj6frY1pPixee_truCnl_24-X22vjk9by-vflycri5bJ7WoFAG9UKhgUnYcuRK99sILxzvvrRTYWW-d4CO33P8RA5-UVpPWnBgpPJfHzZfl37uc7mcs1dymOUcqaUQnNAyiU0Cqk0W1sTs0IfpUqStaE-6DoxH7QPcrJTs9COgVAV9fAaSp-FA3di7FXFz_eq0dF63LqZSM3rhQn4dARcLOcDBP3pnFO0PemWfvjCBU_Ife5bCnob4NyQUqJI4bzP9afoP6C7AWq-o
CitedBy_id crossref_primary_10_1007_s10559_024_00669_4
Cites_doi 10.1007/s10559-017-9918-6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1007/s10559-020-00273-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection



DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-8337
EndPage 576
ExternalDocumentID A634972056
10_1007_s10559_020_00273_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ICD
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c392t-c30ef26e60d6a8816259f2f2c14ffa32e4afac2181a1fb271d696d99126e32f13
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553282500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1060-0396
IngestDate Wed Sep 17 23:58:07 EDT 2025
Sat Nov 29 10:07:16 EST 2025
Wed Nov 26 10:06:54 EST 2025
Sat Nov 29 01:48:32 EST 2025
Tue Nov 18 22:33:15 EST 2025
Fri Feb 21 02:41:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords system of linear algebraic equations
exact scheme
superposition of solutions
forth-order differential equation
Green function
boundary-value problem
spectral problem
Cauchy problem
Wronskian
scheme of high order of accuracy
linearly independent solutions
grid method
tridiagonal matrix algorithm
functional series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-c30ef26e60d6a8816259f2f2c14ffa32e4afac2181a1fb271d696d99126e32f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2429072460
PQPubID 48839
PageCount 11
ParticipantIDs proquest_journals_2429072460
gale_infotracacademiconefile_A634972056
gale_incontextgauss_ISR_A634972056
crossref_citationtrail_10_1007_s10559_020_00273_2
crossref_primary_10_1007_s10559_020_00273_2
springer_journals_10_1007_s10559_020_00273_2
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cybernetics and systems analysis
PublicationTitleAbbrev Cybern Syst Anal
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CR10
Samarskii (CR12) 1983
CR3
Show (CR5) 1963; 3
CR6
Zav’yalov, Kvasov, Miroshnichenko (CR9) 1980
Prikazchikov, Klunnik (CR11) 1994; 30
Tikhonov, Samarskii (CR1) 1963; 3
Show (CR4) 1963; 3
Prikazchikov, Klunnik, Lyubomyrska (CR8) 1992; 76
Prikazchikov (CR2) 1969; 9
Prikazchikov (CR7) 2017; 53
VG Prikazchikov (273_CR11) 1994; 30
AA Samarskii (273_CR12) 1983
X Show (273_CR4) 1963; 3
VG Prikazchikov (273_CR8) 1992; 76
YS Zav’yalov (273_CR9) 1980
VG Prikazchikov (273_CR7) 2017; 53
VG Prikazchikov (273_CR2) 1969; 9
273_CR6
AN Tikhonov (273_CR1) 1963; 3
273_CR10
X Show (273_CR5) 1963; 3
273_CR3
References_xml – volume: 3
  start-page: 841
  issue: 5
  year: 1963
  end-page: 860
  ident: CR4
  article-title: Homogeneous difference schemes for the fourth-order equation with discontinuous coefficients
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– volume: 3
  start-page: 1014
  issue: 6
  year: 1963
  end-page: 1031
  ident: CR5
  article-title: The difference Sturm–Liouville problem for the fourth-order equation with discontinuous coefficients
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– ident: CR6
– year: 1980
  ident: CR9
  publication-title: Methods of Spline Functions [in Russian]
– ident: CR3
– volume: 53
  start-page: 186
  issue: 2
  year: 2017
  end-page: 192
  ident: CR7
  article-title: Methods to construct the accurate difference scheme for a differential equation of order 4
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-017-9918-6
– volume: 9
  start-page: 315
  issue: 2
  year: 1969
  end-page: 335
  ident: CR2
  article-title: Homogeneous difference schemes of high order of accuracy for the Sturm–Liouville problem
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– volume: 30
  start-page: 1800
  issue: 10
  year: 1994
  end-page: 1805
  ident: CR11
  article-title: A priori estimate of solution of a biharmonic equation
  publication-title: Diff. Uravneniya
– volume: 3
  start-page: 99
  issue: 3
  year: 1963
  end-page: 108
  ident: CR1
  article-title: On homogeneous difference schemes of high order of accuracy on non-uniform grids
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– volume: 76
  start-page: 49
  year: 1992
  end-page: 59
  ident: CR8
  article-title: Spline projection schemes for equations of fourth order
  publication-title: Obchysl. ta Prykladna Matematyka
– ident: CR10
– year: 1983
  ident: CR12
  publication-title: Theory of Difference Schemes [in Russian]
– ident: 273_CR6
– volume: 9
  start-page: 315
  issue: 2
  year: 1969
  ident: 273_CR2
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– volume: 3
  start-page: 1014
  issue: 6
  year: 1963
  ident: 273_CR5
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– ident: 273_CR10
– volume: 30
  start-page: 1800
  issue: 10
  year: 1994
  ident: 273_CR11
  publication-title: Diff. Uravneniya
– volume: 3
  start-page: 841
  issue: 5
  year: 1963
  ident: 273_CR4
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– volume: 53
  start-page: 186
  issue: 2
  year: 2017
  ident: 273_CR7
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-017-9918-6
– volume-title: Theory of Difference Schemes [in Russian]
  year: 1983
  ident: 273_CR12
– volume: 76
  start-page: 49
  year: 1992
  ident: 273_CR8
  publication-title: Obchysl. ta Prykladna Matematyka
– volume: 3
  start-page: 99
  issue: 3
  year: 1963
  ident: 273_CR1
  publication-title: Zh. Vych. Mat. Mat. Fiz.
– ident: 273_CR3
– volume-title: Methods of Spline Functions [in Russian]
  year: 1980
  ident: 273_CR9
SSID ssj0003078
Score 2.1504834
Snippet We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 566
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Control
Differential equations
Exact solutions
Linear algebra
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix methods
Ordinary differential equations
Processor Architectures
Software Engineering/Programming and Operating Systems
Superposition (mathematics)
Systems Theory
Title Exact Three-Point Scheme and Schemes of High Order of Accuracy for a Forth-Order Ordinary Differential Equation
URI https://link.springer.com/article/10.1007/s10559-020-00273-2
https://www.proquest.com/docview/2429072460
Volume 56
WOSCitedRecordID wos000553282500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamsQd4ADZAFDZkISRAYClxXCd5rEar7WFjogPtzbraPjRpJNCkCP4958TpGDAkeIkS-Zw49vn8Wb77jrFn4xzS1GYoSidzobBAsVDSiwSlcgWMFwiuSzaRHx8XZ2flSQwKawZv9-FIsrPUPwW7EfoVYbvTkbAIMrw3xoFtJuzR5x_W9pe0tg-A0ySZlTqGyvz5HVeWo1-N8m-no92iM7vzf829y25HkMknvVZssw1f7bBbR2uG1maHbcdJ3fAXkXn65T1WT7-Bbfkpja8XJ_V51fI5Deonz6Fy8bbhNfLgHcLfBtbO8DSxdrUE-50TAObAZ-EoSPSldO0CfvmbmIiFDMoFn37pCcbvs_ez6en-gYgZGYQlHNXSNfEotdeJ01AUadg8oURpU4UImfQKEGxADZDiQuap06V2BEGpTiYxzR6wzaqu_EPGfeJITQpIFCxCPnYoCySDV6DLS49ejVg6DIyxka48ZM24MJdEy6GHDfWw6XrYyBF7ta7zuSfr-Kv00zDeJrBgVMHN5iOsmsYczt-Zic5UmUsChyP2PAphTZ-3EKMW6CcCcdYVyd1Bb0y0A40hAFQmuVQ6GbHXg55cFl_fuEf_Jv6Y3ZSdqgU_4l222S5Xfo9t2a_tebN80s2PH94pBvk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-hDQn2AGyAKBtgISRAYClxvHw8VtBqE1uZaEF7s1zbhyZtCTTpNP57zonTMb4keIkS-Zw49vn8s3z3O4Bnu5mOY5MgL6zIuMQc-VwKxyMU0uZ6d47atskmsskkPz4ujkJQWN17u_dHkq2l_iHYjdAv99udloSFk-Fdlz7Njt-jTz-t7C9pbRcAl5JkUqQhVOb377iyHP1slH85HW0XnfHt_2vuHbgVQCYbdlqxCddcuQUbhyuG1noLNsOkrtmLwDz98i5UowttGjaj8XX8qDopGzalQT1zTJc23NasQua9Q9h7z9rpn4bGLBfafGMEgJlmY38UxLtSurYBv-xtSMRCBuWUjb52BOP34ON4NHuzx0NGBm4IRzV0jRyK1KWRTXWex37zhAKFiSWiToSTGrXxqEHHOBdZbNMitQRBqU4iME7uw1pZle4BMBdZUpNcR1LPfT52XeRIBi9HmxUOnRxA3A-MMoGu3GfNOFWXRMu-hxX1sGp7WIkBvFrV-dKRdfxV-qkfb-VZMErvZvNZL-ta7U8_qGGayCITBA4H8DwIYUWfNzpELdBPeOKsK5I7vd6oYAdqRQCoiDIh02gAr3s9uSz-c-Me_pv4E7ixNzs8UAf7k3fbcFO0aud9indgrVks3SO4bs6bk3rxuJ0r3wE3CQnd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hDSF4ADZAlA2wEBIgZi1xvHw8VqwVE1CqdaC9Wa7tQ5O2ZGvSafz3nBO32_iSEC9RIp8Txz6ff5bvfgfwcifTcWwS5IUVGZeYI59K4XiEQtpc70xR2zbZRDYa5YeHxfhKFH_r7b44kuxiGjxLU9lsn1rcvhL4RkiY-61PS8jCyQivStrJeKeu_cnXpS0mDe6C4VKSTIo0hM38_h3XlqafDfQvJ6XtAjS89_9Nvw93A_hk_U5b1uCGK9fhzqclc2u9DmthstfsdWCkfvMAqsGFNg07oHF3fFwdlQ2b0GCfOKZLG25rViHzXiPss2fz9E99Y-Yzbb4zAsZMs6E_IuJdKV3bQGC2GxK0kKE5ZoOzjnj8IXwZDg7evechUwM3hK8aukYORerSyKY6z2O_qUKBwsQSUSfCSY3aeDShY5yKLLZpkVqCplQnERgnj2ClrEr3GJiLLKlPriOppz5Puy5yJEOYo80Kh072IF4MkjKBxtxn0zhWlwTMvocV9bBqe1iJHrxd1jntSDz-Kv3Cj73y7Bild7_5pud1rfYm-6qfJrLIBIHGHrwKQljR540O0Qz0E55Q65rk5kKHVLAPtSJgVESZkGnUg62FzlwW_7lxT_5N_DncGu8O1ce90YcNuC1arfOuxpuw0szm7incNOfNUT171k6bH0XwEsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Three-Point+Scheme+and+Schemes+of+High+Order+of+Accuracy+for+a+Forth-Order+Ordinary+Differential+Equation&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Prikazchikov%2C+V.&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1060-0396&rft.eissn=1573-8337&rft.volume=56&rft.issue=4&rft.spage=566&rft.epage=576&rft_id=info:doi/10.1007%2Fs10559-020-00273-2&rft.externalDocID=10_1007_s10559_020_00273_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon