Exact Three-Point Scheme and Schemes of High Order of Accuracy for a Forth-Order Ordinary Differential Equation

We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cybernetics and systems analysis Ročník 56; číslo 4; s. 566 - 576
Hlavní autor: Prikazchikov, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer
Springer Nature B.V
Témata:
ISSN:1060-0396, 1573-8337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an exact three-point scheme and schemes of high order of accuracy, which are two systems of linear algebraic equations. Each equation of the system contains five unknown values of the exact solution and its first derivative at three grid points on the interval. In constructing the scheme, the principle of superposition of solutions was used. Partial sums of the functional series representing independent solutions provide schemes of arbitrary order of accuracy for the boundary-value poblem and for the spectral one. To solve systems of linear equations, the modified tridiagonal matrix algorithm is proposed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-020-00273-2