A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I

The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 18; H. 1; S. 4 - 19
Hauptverfasser: Mukhopadhyay, Anirban, Maulik, Ujjwal, Bandyopadhyay, Sanghamitra, Coello Coello, Carlos Artemio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and to discover significant and meaningful information. Many real-life data mining problems involve multiple conflicting measures of performance, or objectives, which need to be optimized simultaneously. Under this context, multiobjective evolutionary algorithms are gradually finding more and more applications in the domain of data mining since the beginning of the last decade. In this two-part paper, we have made a comprehensive survey on the recent developments of multiobjective evolutionary algorithms for data mining problems. In this paper, Part I, some basic concepts related to multiobjective optimization and data mining are provided. Subsequently, various multiobjective evolutionary approaches for two major data mining tasks, namely feature selection and classification, are surveyed. In Part II of this paper, we have surveyed different multiobjective evolutionary algorithms for clustering, association rule mining, and several other data mining tasks, and provided a general discussion on the scopes for future research in this domain.
AbstractList The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and to discover significant and meaningful information. Many real-life data mining problems involve multiple conflicting measures of performance, or objectives, which need to be optimized simultaneously. Under this context, multiobjective evolutionary algorithms are gradually finding more and more applications in the domain of data mining since the beginning of the last decade. In this two-part paper, we have made a comprehensive survey on the recent developments of multiobjective evolutionary algorithms for data mining problems. In this paper, Part I, some basic concepts related to multiobjective optimization and data mining are provided. Subsequently, various multiobjective evolutionary approaches for two major data mining tasks, namely feature selection and classification, are surveyed. In Part II of this paper, we have surveyed different multiobjective evolutionary algorithms for clustering, association rule mining, and several other data mining tasks, and provided a general discussion on the scopes for future research in this domain.
Author Maulik, Ujjwal
Coello Coello, Carlos Artemio
Mukhopadhyay, Anirban
Bandyopadhyay, Sanghamitra
Author_xml – sequence: 1
  givenname: Anirban
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Anirban
  email: anirban@klyuniv.ac.in
  organization: Dept. of Comput. Sci. & Eng., Univ. of Kalyani, Kalyani, India
– sequence: 2
  givenname: Ujjwal
  surname: Maulik
  fullname: Maulik, Ujjwal
  email: umaulik@cse.jdvu.ac.in
  organization: Dept. of Comput. Sci. & Eng., Jadavpur Univ., Kolkata, India
– sequence: 3
  givenname: Sanghamitra
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Sanghamitra
  email: sanghami@isical.ac.in
  organization: Machine Intell. Unit, Indian Stat. Inst., Kolkata, India
– sequence: 4
  givenname: Carlos Artemio
  surname: Coello Coello
  fullname: Coello Coello, Carlos Artemio
  email: ccoello@cs.cinvestav.mx
  organization: Dept. de Comput. (Evolutionary Comput. Group), CINVESTAV-IPN, Mexico City, Mexico
BookMark eNp9kE1LAzEQhoNUsFZ_gHgJePGyNZNkdxNvpdYvFAU_8LZks1lN2W5qki3037ulxYMHTzMMzzvMPIdo0LrWIHQCZAxA5MXr7H06pgTYmFJJiMj20BAkh4QQmg36ngiZ5Ln4OECHIcwJAZ6CHKL7CX7p_MqssavxY9dE68q50dGuDJ6tXNP1g1b5NZ40n87b-LUIuHYeX6mo8KNtbft5iZ-Vj_juCO3XqgnmeFdH6O169jq9TR6ebu6mk4dEM0ljUmpGBCtrUVVKlimRgpKa01xIzXnFQXMloKYV5XWly8zkTJVlmldZrlPNoGIjdL7du_TuuzMhFgsbtGka1RrXhQJSSiTLAWiPnv1B567zbX9dTxGegWQ9OkL5ltLeheBNXWgb1ebx6JVtCiDFxnGxcVxsHBc7x30S_iSX3i56Xf9mTrcZa4z55bMsFYKl7AdAyIhy
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2021_114737
crossref_primary_10_1109_ACCESS_2019_2963363
crossref_primary_10_1016_j_procs_2016_09_448
crossref_primary_10_1109_TEVC_2022_3215745
crossref_primary_10_1016_j_procs_2017_12_100
crossref_primary_10_1016_j_asoc_2018_04_037
crossref_primary_10_1016_j_neucom_2016_12_045
crossref_primary_10_1109_TCYB_2018_2849442
crossref_primary_10_1007_s10696_018_9309_y
crossref_primary_10_1109_ACCESS_2021_3126292
crossref_primary_10_1016_j_eswa_2019_112827
crossref_primary_10_1109_ACCESS_2020_3029773
crossref_primary_10_1109_TEVC_2016_2519758
crossref_primary_10_1137_19M1271439
crossref_primary_10_1016_j_ins_2017_08_043
crossref_primary_10_1109_ACCESS_2021_3115848
crossref_primary_10_1016_j_swevo_2022_101070
crossref_primary_10_1016_j_asoc_2022_108503
crossref_primary_10_1007_s00500_018_3479_0
crossref_primary_10_1016_j_asoc_2019_02_043
crossref_primary_10_1002_widm_1239
crossref_primary_10_1007_s10898_023_01280_1
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1109_TETCI_2020_3000224
crossref_primary_10_1371_journal_pone_0139190
crossref_primary_10_1007_s00521_021_06459_9
crossref_primary_10_1109_TEVC_2017_2726341
crossref_primary_10_1109_ACCESS_2022_3181524
crossref_primary_10_3390_sym13071133
crossref_primary_10_1109_TEVC_2016_2524555
crossref_primary_10_1002_int_22892
crossref_primary_10_1007_s11277_018_5909_9
crossref_primary_10_1007_s40747_020_00215_7
crossref_primary_10_1109_TNNLS_2015_2504389
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_MCI_2017_2708618
crossref_primary_10_1145_2792984
crossref_primary_10_1007_s00453_019_00666_6
crossref_primary_10_1016_j_ins_2022_01_055
crossref_primary_10_1016_j_ins_2021_10_058
crossref_primary_10_1080_0305215X_2016_1187729
crossref_primary_10_1109_ACCESS_2022_3224012
crossref_primary_10_1016_j_asoc_2017_11_045
crossref_primary_10_1016_j_swevo_2021_100939
crossref_primary_10_1016_j_apenergy_2023_121123
crossref_primary_10_1016_j_asoc_2017_09_033
crossref_primary_10_1016_j_knosys_2016_02_012
crossref_primary_10_1145_3452741
crossref_primary_10_1109_TCBB_2016_2622692
crossref_primary_10_1109_TII_2017_2676000
crossref_primary_10_1016_j_eswa_2017_01_001
crossref_primary_10_1515_jisys_2014_0107
crossref_primary_10_1016_j_engappai_2018_09_009
crossref_primary_10_3390_math10040587
crossref_primary_10_1016_j_heliyon_2021_e07017
crossref_primary_10_1016_j_ins_2018_05_031
crossref_primary_10_1007_s10586_017_0980_7
crossref_primary_10_1016_j_swevo_2017_05_003
crossref_primary_10_1109_TCSS_2022_3188295
crossref_primary_10_1109_TEVC_2015_2433672
crossref_primary_10_1016_j_eswa_2017_07_025
crossref_primary_10_1080_09720529_2021_2014131
crossref_primary_10_1016_j_eswa_2019_113163
crossref_primary_10_1109_ACCESS_2017_2689040
crossref_primary_10_1016_j_jocs_2018_12_010
crossref_primary_10_1007_s12293_015_0176_8
crossref_primary_10_3390_sym13030458
crossref_primary_10_1007_s00500_021_05981_1
crossref_primary_10_1016_j_asoc_2024_111554
crossref_primary_10_1016_j_swevo_2020_100697
crossref_primary_10_3390_sym13020301
crossref_primary_10_29328_journal_jairi_1001003
crossref_primary_10_1007_s40747_022_00963_8
crossref_primary_10_1109_TEVC_2023_3281810
crossref_primary_10_1016_j_neucom_2016_07_080
crossref_primary_10_1109_ACCESS_2025_3536279
crossref_primary_10_1017_S0890060420000311
crossref_primary_10_1145_2742642
crossref_primary_10_1016_j_rser_2016_01_091
crossref_primary_10_1109_TEVC_2023_3314105
crossref_primary_10_1016_j_swevo_2021_100842
crossref_primary_10_3390_a14110338
crossref_primary_10_1016_j_neucom_2019_01_017
crossref_primary_10_1145_2788397
crossref_primary_10_1016_j_eswa_2019_01_035
crossref_primary_10_1016_j_jksuci_2016_12_006
crossref_primary_10_1016_j_jksuci_2021_05_013
crossref_primary_10_1002_ett_4574
crossref_primary_10_1007_s11047_016_9542_9
crossref_primary_10_1109_TEVC_2018_2844286
crossref_primary_10_1109_TEVC_2017_2688863
crossref_primary_10_1016_j_isci_2024_109478
crossref_primary_10_1109_TEVC_2022_3192113
crossref_primary_10_1109_TGRS_2017_2748701
crossref_primary_10_1016_j_swevo_2020_100792
crossref_primary_10_1109_TCYB_2019_2907002
crossref_primary_10_1109_TCBB_2021_3132400
crossref_primary_10_1080_0305215X_2015_1078139
crossref_primary_10_1109_ACCESS_2020_2989219
crossref_primary_10_1089_cmb_2018_0080
crossref_primary_10_3390_a14030076
crossref_primary_10_1016_j_orhc_2024_100430
crossref_primary_10_1109_TEVC_2015_2476359
crossref_primary_10_1007_s00521_022_07985_w
crossref_primary_10_1109_ACCESS_2019_2916899
crossref_primary_10_1016_j_knosys_2016_12_011
crossref_primary_10_1016_j_jss_2014_11_043
crossref_primary_10_1002_ett_4618
crossref_primary_10_1016_j_ins_2015_10_010
crossref_primary_10_1109_TCYB_2017_2692385
crossref_primary_10_1007_s10586_018_1767_1
crossref_primary_10_1016_j_asoc_2019_105757
crossref_primary_10_1007_s00521_021_05786_1
crossref_primary_10_1016_j_knosys_2016_04_018
crossref_primary_10_1109_ACCESS_2019_2926579
crossref_primary_10_1016_j_ins_2017_06_031
crossref_primary_10_1109_TEVC_2016_2555315
crossref_primary_10_1007_s00500_016_2422_5
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_26634_jse_11_3_13620
crossref_primary_10_1016_j_swevo_2017_08_005
crossref_primary_10_1016_j_ins_2016_12_037
crossref_primary_10_1088_1741_2552_aa8063
crossref_primary_10_1177_1178622120975829
crossref_primary_10_1016_j_asoc_2022_109321
crossref_primary_10_3390_w11040713
crossref_primary_10_1109_JSYST_2022_3146014
crossref_primary_10_1109_ACCESS_2024_3417334
crossref_primary_10_1007_s11831_024_10109_3
crossref_primary_10_1186_s41044_016_0003_3
crossref_primary_10_1002_widm_1307
crossref_primary_10_1016_j_swevo_2018_02_005
crossref_primary_10_1016_j_neunet_2019_12_005
crossref_primary_10_1109_MCI_2018_2806997
crossref_primary_10_3390_e20090684
crossref_primary_10_1007_s12065_023_00822_6
crossref_primary_10_1007_s00500_017_2923_x
crossref_primary_10_1016_j_asoc_2018_10_039
crossref_primary_10_1007_s00521_022_07161_0
crossref_primary_10_1109_MCI_2017_2708578
crossref_primary_10_1007_s10489_018_1245_8
crossref_primary_10_1016_j_psj_2024_103633
crossref_primary_10_1109_TEVC_2013_2290082
crossref_primary_10_1186_s40537_021_00538_3
crossref_primary_10_1016_j_jss_2023_111703
crossref_primary_10_1109_ACCESS_2018_2860791
crossref_primary_10_1016_j_ins_2015_01_018
crossref_primary_10_1016_j_cosrev_2018_12_001
crossref_primary_10_1007_s11227_019_02764_2
crossref_primary_10_1080_1206212X_2018_1521895
crossref_primary_10_1109_MCI_2025_3563425
crossref_primary_10_1016_j_neucom_2015_06_016
crossref_primary_10_1016_j_procs_2016_09_369
crossref_primary_10_1145_3467477
crossref_primary_10_1111_exsy_12485
crossref_primary_10_1016_j_swevo_2019_05_005
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_1109_TEVC_2017_2695579
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1109_JSYST_2015_2482602
crossref_primary_10_3233_JIFS_181364
crossref_primary_10_1016_j_neucom_2016_09_078
crossref_primary_10_1016_j_patcog_2016_05_004
crossref_primary_10_1109_JSYST_2015_2469102
crossref_primary_10_3390_automation1010006
crossref_primary_10_1016_j_knosys_2015_01_013
crossref_primary_10_1109_TEVC_2015_2501315
crossref_primary_10_1016_j_asoc_2018_07_045
crossref_primary_10_1080_09540091_2018_1487384
crossref_primary_10_3390_computation9100110
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1007_s00500_016_2475_5
crossref_primary_10_1007_s12665_018_7951_z
crossref_primary_10_1109_ACCESS_2020_3014301
crossref_primary_10_1007_s10489_019_01503_7
crossref_primary_10_1007_s00500_015_1907_y
crossref_primary_10_1007_s11831_022_09778_9
crossref_primary_10_1162_evco_a_00339
crossref_primary_10_1145_3300148
crossref_primary_10_1016_j_cose_2022_102947
crossref_primary_10_1016_j_neucom_2025_130631
crossref_primary_10_1016_j_swevo_2019_100626
crossref_primary_10_1109_JSEN_2025_3568124
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1007_s10115_019_01342_5
crossref_primary_10_1109_TCYB_2017_2756874
crossref_primary_10_1109_TKDE_2020_3033519
crossref_primary_10_1007_s13748_019_00185_z
crossref_primary_10_1007_s44192_023_00047_0
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1515_jisys_2016_0044
crossref_primary_10_1016_j_asoc_2020_106192
crossref_primary_10_1007_s11432_019_2749_0
crossref_primary_10_1108_AAOUJ_01_2017_0012
crossref_primary_10_1109_ACCESS_2024_3521383
Cites_doi 10.1007/s10898-010-9614-9
10.1007/s00500-009-0460-y
10.1109/ICDAR.2003.1227748
10.1109/CEC.2000.870311
10.1007/s10462-011-9212-3
10.1109/CEC.1999.781913
10.1109/TSMCB.2004.834438
10.4018/jncr.2010040105
10.3233/IDA-2002-6605
10.1145/775047.775053
10.1007/1-84628-284-5
10.1145/170035.170072
10.1109/4235.797969
10.1016/j.ijar.2007.10.004
10.1109/TEVC.2013.2290082
10.1109/FUZZY.2009.5277369
10.1016/j.ejor.2006.08.008
10.1007/978-3-540-87536-9_46
10.1007/s00500-010-0671-2
10.1142/S021800140300271X
10.1109/FUZZ-IEEE.2012.6251174
10.1109/FUZZY.2005.1452432
10.5019/j.ijcir.2006.64
10.1023/A:1026032530166
10.1145/1830483.1830699
10.1007/978-3-642-17144-4_9
10.1126/science.286.5439.531
10.1007/978-3-642-16615-0
10.1007/978-3-642-13214-8_11
10.1016/j.eswa.2008.07.026
10.1145/1276958.1277323
10.1109/FUZZY.2005.1452498
10.1109/ICNN.1997.614135
10.1016/j.asoc.2007.02.009
10.1186/1471-2105-10-27
10.1016/j.patcog.2006.03.003
10.1162/evco.1994.2.3.221
10.1016/S0031-3203(99)00137-5
10.1145/1143997.1144248
10.1109/TPAMI.1979.4766909
10.1109/TPAMI.2002.1114856
10.1145/332306.332564
10.1109/FUZZY.2011.6007436
10.1016/j.ins.2003.03.021
10.1109/4235.996017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2013.2290086
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 19
ExternalDocumentID 3238339381
10_1109_TEVC_2013_2290086
6658835
Genre orig-research
GrantInformation_xml – fundername: Indo-Mexico
  grantid: DST/INT/MEX/RPO-04/2008
– fundername: Department of Science and Technology, India
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c392t-bc3083bf8dda9b509820f42789c44d41c4a81f2d24fdcb6e73abb57d67c5c31d3
IEDL.DBID RIE
ISICitedReferencesCount 266
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330890700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 08:16:58 EDT 2025
Sun Nov 09 06:48:54 EST 2025
Sat Nov 29 03:13:46 EST 2025
Tue Nov 18 22:16:49 EST 2025
Tue Aug 26 16:49:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-bc3083bf8dda9b509820f42789c44d41c4a81f2d24fdcb6e73abb57d67c5c31d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1504619309
PQPubID 85418
PageCount 16
ParticipantIDs proquest_miscellaneous_1520937112
crossref_citationtrail_10_1109_TEVC_2013_2290086
ieee_primary_6658835
crossref_primary_10_1109_TEVC_2013_2290086
proquest_journals_1504619309
PublicationCentury 2000
PublicationDate 2014-Feb.
2014-02-00
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
pappa (ref54) 2002
ref55
ref11
ref10
horn (ref9) 1993
ref16
ref18
liu (ref50) 2002
corne (ref14) 2000
tseng (ref33) 1997
emmanouilidis (ref37) 2002
goldberg (ref4) 1989
vapnik (ref23) 1998
ref46
ref45
ref47
ref42
ref44
agrawal (ref27) 1994
ref49
golub (ref52) 1999; 286
coello (ref6) 2007
fonseca (ref8) 1993
zitzler (ref12) 2001
bandyopadhyay (ref21) 2005
ref40
venkatadri (ref43) 2010; 1
slonim (ref53) 2000
schaffer (ref7) 1985
emmanouilidis (ref36) 2001; 3
ref35
ref34
suttorp (ref73) 2006; 16
eshelman (ref71) 1993
ref31
bandyopadhyay (ref22) 2007
ref74
ref77
ref76
ref32
(ref20) 1996
ref2
ref1
ref38
deb (ref70) 1995; 9
ishibuchi (ref58) 2005
deb (ref5) 2001
cu llar (ref75) 2007
zitzler (ref19) 1999
ref72
jain (ref24) 1988
morita (ref39) 2003
castillo (ref30) 2006
ref68
ref67
ref26
kim (ref51) 2002; 6
ref25
ref64
ref63
oliveira (ref41) 2006; 16
ref66
ref65
ref28
ref29
wright (ref78) 1991
zitzler (ref17) 2004; 3242
corne (ref15) 2001
han (ref3) 2000
ref60
ref62
ref61
ishibuchi (ref69) 2003
kim (ref48) 2001
References_xml – ident: ref77
  doi: 10.1007/s10898-010-9614-9
– ident: ref64
  doi: 10.1007/s00500-009-0460-y
– ident: ref40
  doi: 10.1109/ICDAR.2003.1227748
– ident: ref35
  doi: 10.1109/CEC.2000.870311
– start-page: 285
  year: 2005
  ident: ref58
  article-title: Multiobjective formulations of fuzzy rule-based classification system design
  publication-title: Proc EUSFLAT Conf
– year: 2002
  ident: ref37
  publication-title: Evolutionary Multi-Objective Feature Selection and ROC Analysis With Application to Industrial Machinery Fault Diagnosis
– ident: ref68
  doi: 10.1007/s10462-011-9212-3
– ident: ref13
  doi: 10.1109/CEC.1999.781913
– volume: 3
  start-page: 1
  year: 2001
  ident: ref36
  article-title: A multi-objective genetic algorithm approach to feature selection in neural and fuzzy modeling
  publication-title: Evolution and Optimization
– start-page: 666
  year: 2003
  ident: ref39
  article-title: Unsupervised feature selection using multi-objective genetic algorithm for handwritten word recognition
  publication-title: Proc ICDAR
– ident: ref72
  doi: 10.1109/TSMCB.2004.834438
– year: 2007
  ident: ref6
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– start-page: 759
  year: 2001
  ident: ref48
  article-title: An evolutionary multi-objective local selection algorithm for customer targeting
  publication-title: Proc CEC
– volume: 9
  start-page: 115
  year: 1995
  ident: ref70
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref55
  doi: 10.4018/jncr.2010040105
– start-page: 416
  year: 1993
  ident: ref8
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
  publication-title: Proc 7th Int Conf Genetic Algorithms
– start-page: 205
  year: 1991
  ident: ref78
  publication-title: Foundations of Genetic Algorithms
– volume: 6
  start-page: 531
  year: 2002
  ident: ref51
  article-title: Evolutionary model selection in unsupervised learning
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2002-6605
– ident: ref28
  doi: 10.1145/775047.775053
– year: 2000
  ident: ref3
  publication-title: Data Mining Concepts and Techniques
– year: 2005
  ident: ref21
  publication-title: Advanced Methods for Knowledge Discovery from Complex Data
  doi: 10.1007/1-84628-284-5
– year: 1989
  ident: ref4
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref26
  doi: 10.1145/170035.170072
– ident: ref11
  doi: 10.1109/4235.797969
– start-page: 487
  year: 1994
  ident: ref27
  article-title: Fast algorithms for mining association rules in large databases
  publication-title: Proc 20th VLDB
– start-page: 359
  year: 2007
  ident: ref75
  article-title: Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: A experimental study
  publication-title: Proc 9th IWANN
– ident: ref63
  doi: 10.1016/j.ijar.2007.10.004
– year: 1996
  ident: ref20
  publication-title: Advances in Knowledge Discovery and Data Mining
– year: 1988
  ident: ref24
  publication-title: Algorithms for clustering data
– ident: ref1
  doi: 10.1109/TEVC.2013.2290082
– ident: ref61
  doi: 10.1109/FUZZY.2009.5277369
– start-page: 95
  year: 2001
  ident: ref12
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Proc EUROGEN
– ident: ref18
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref76
  doi: 10.1007/978-3-540-87536-9_46
– start-page: 93
  year: 1985
  ident: ref7
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proc Int Conf Genetic Algorithms and their Appl
– ident: ref62
  doi: 10.1007/s00500-010-0671-2
– year: 1998
  ident: ref23
  publication-title: Statistical Learning Theory
– ident: ref38
  doi: 10.1142/S021800140300271X
– ident: ref67
  doi: 10.1109/FUZZ-IEEE.2012.6251174
– year: 1993
  ident: ref9
  publication-title: Multiobjective optimization using the niched Pareto genetic algorithm
– start-page: 453
  year: 2006
  ident: ref30
  article-title: Multiobjective optimization of ensembles of multilayer perceptrons for pattern classification
  publication-title: Proc PPSN IX
– ident: ref59
  doi: 10.1109/FUZZY.2005.1452432
– ident: ref49
  doi: 10.5019/j.ijcir.2006.64
– ident: ref34
  doi: 10.1023/A:1026032530166
– start-page: 297
  year: 2002
  ident: ref50
  article-title: Selecting informative genes using a multiobjective evolutionary algorithm
  publication-title: Proc CEC
– ident: ref47
  doi: 10.1145/1830483.1830699
– volume: 1
  start-page: 443
  year: 2010
  ident: ref43
  article-title: A multiobjective genetic algorithm for feature selection in data mining
  publication-title: International Journal of Computer and Information Science
– ident: ref46
  doi: 10.1007/978-3-642-17144-4_9
– start-page: 839
  year: 2000
  ident: ref14
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Proc PPSN VI Conf
– volume: 3242
  start-page: 832
  year: 2004
  ident: ref17
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc PPSN VIII
– start-page: 433
  year: 2003
  ident: ref69
  article-title: An empirical study on the effect of mating restriction on the search ability of emo algorithms
  publication-title: Proc 2nd EMO
– volume: 286
  start-page: 531
  year: 1999
  ident: ref52
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: ref2
  doi: 10.1007/978-3-642-16615-0
– volume: 16
  start-page: 49
  year: 2006
  ident: ref41
  publication-title: Multiobjective Machine Learning
– start-page: 116
  year: 2002
  ident: ref54
  article-title: A multiobjective genetic algorithm for attribute selection
  publication-title: Proc 4th RASC
– year: 1999
  ident: ref19
  publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications
– ident: ref45
  doi: 10.1007/978-3-642-13214-8_11
– ident: ref42
  doi: 10.1016/j.eswa.2008.07.026
– volume: 16
  start-page: 199
  year: 2006
  ident: ref73
  publication-title: Multi-Objective Optimization of Support Vector Machines
– start-page: 283
  year: 2001
  ident: ref15
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
  publication-title: Proc GECCO
– ident: ref74
  doi: 10.1145/1276958.1277323
– ident: ref60
  doi: 10.1109/FUZZY.2005.1452498
– start-page: 1612
  year: 1997
  ident: ref33
  article-title: Genetic algorithms for clustering, feature selection, and classification
  publication-title: Proc IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1997.614135
– year: 2007
  ident: ref22
  publication-title: Classification and Learning Using Genetic Algorithms Applications in Bioinformatics and Web Intelligence (Natural Computing Series)
– ident: ref66
  doi: 10.1016/j.asoc.2007.02.009
– ident: ref29
  doi: 10.1186/1471-2105-10-27
– ident: ref32
  doi: 10.1016/j.patcog.2006.03.003
– ident: ref10
  doi: 10.1162/evco.1994.2.3.221
– ident: ref25
  doi: 10.1016/S0031-3203(99)00137-5
– ident: ref44
  doi: 10.1145/1143997.1144248
– start-page: 187
  year: 1993
  ident: ref71
  publication-title: Foundation of Genetic Algorithms 2
– ident: ref57
  doi: 10.1109/TPAMI.1979.4766909
– ident: ref56
  doi: 10.1109/TPAMI.2002.1114856
– year: 2001
  ident: ref5
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– start-page: 263
  year: 2000
  ident: ref53
  article-title: Class prediction and discovery using gene expression data
  publication-title: Proc 4th RECOMB
  doi: 10.1145/332306.332564
– ident: ref65
  doi: 10.1109/FUZZY.2011.6007436
– ident: ref31
  doi: 10.1016/j.ins.2003.03.021
– ident: ref16
  doi: 10.1109/4235.996017
SSID ssj0014519
Score 2.5524533
Snippet The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Association rules
Biological cells
Classification
Construction
Data mining
Data models
Evolutionary
Evolutionary algorithms
Evolutionary computation
feature selection
Genetic algorithms
Itemsets
Mathematical models
multiobjective evolutionary algorithms
Optimization
Pareto optimality
Tasks
Title A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I
URI https://ieeexplore.ieee.org/document/6658835
https://www.proquest.com/docview/1504619309
https://www.proquest.com/docview/1520937112
Volume 18
WOSCitedRecordID wos000330890700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB60-KAPHlWxXqzgkxjNsc0mvhWtqKgIHvQt7KmV2kiaFvz37m62oaAIvgWyOdiZ3flmZ-YbgMOQR5TwMPF4QIh2UNrK0zgOe0o7Ez6NRRopyzN7S-7vk14vfZiD47oWRkppk8_kibm0sXyR87E5KjuNtbnUiGEe5gmJq1qtOmJgaFKqZPpUI8ak5yKYgZ-ePnVfzk0SV3RiyM19UzY9Y4NsU5UfO7E1L5cr__uxVVh2MBJ1KrmvwZwcNmFl2qIBuRXbhKUZvsF1uOmgx3ExkV8oV8iW3ubsvdrxUHfilJAWX6gzeM2Lfvn2MUIa1KILWlJ0Z1tJnKEHrWzoegOeL7tP51eea6bgcQ2BSo_xSKMtphIhaMo0TNCmX5k-GynHWOCAY5oEKhQhVoKzWJKIMtYmIia8zaNARJvQGOZDuQWIEJEoISVjhueBBYxRLmKJScxjjlXSAn86vRl3TOOm4cUgsx6Hn2ZGIpmRSOYk0oKj-pHPimbjr8HrRgT1QDf7LdidyjBzC3GUabyLtY8Y-WkLDurbegmZuAgdynxsxoS-oQUMwu3f37wDi_r7uErW3oVGWYzlHizwSdkfFftWD78BcsvaXA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-ybrD2Yd2alabLOg32NObEH4pl9y2kKf1IQ2HZyJvR55qSxsVxAv3vK8mKKbQM-mawZITupPud7-53AD9CHlHCw8TjASHaQekpT-M47CntTPg0FmmkLM_siIzHyXSaXjfgV10LI6W0yWeyYx5tLF_kfGV-lXVjbS41YngDb3sYh35VrVXHDAxRSpVOn2rMmExdDDPw0-5k-Hdg0riijqE3903h9BMrZNuqPLuLrYE53X3d0j7CBwckUb-S_CdoyMUe7G6aNCB3Zvdg5wnjYBMu-uj3qljLB5QrZItvc3Zb3XlouHZqSIsH1J__y4tZeXO3RBrWohNaUnRlm0kco2utbuj8M_w5HU4GZ55rp-BxDYJKj_FI4y2mEiFoyjRQ0MZfmU4bKcdY4IBjmgQqFCFWgrNYkogy1iMiJrzHo0BE-7C1yBfyABAhIlFCSsYM0wMLGKNcxBKTmMccq6QF_mZ7M-64xk3Li3lmfQ4_zYxEMiORzEmkBT_rKfcV0cb_BjeNCOqBbvdb0N7IMHNHcZlpxIu1lxj5aQu-16_1ITKREbqQ-cqMCX1DDBiEhy9_-Ru8P5tcjbLR-fjyC2zrteAqdbsNW2Wxkl_hHV-Xs2VxZHXyEfSQ3aM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Multiobjective+Evolutionary+Algorithms+for+Data+Mining%3A+Part+I&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Mukhopadhyay%2C+Anirban&rft.au=Maulik%2C+Ujjwal&rft.au=Bandyopadhyay%2C+Sanghamitra&rft.au=Coello%2C+Carlos+Artemio+Coello&rft.date=2014-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=18&rft.issue=1&rft.spage=4&rft.epage=19&rft_id=info:doi/10.1109%2FTEVC.2013.2290086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon