A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I
The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 18; H. 1; S. 4 - 19 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and to discover significant and meaningful information. Many real-life data mining problems involve multiple conflicting measures of performance, or objectives, which need to be optimized simultaneously. Under this context, multiobjective evolutionary algorithms are gradually finding more and more applications in the domain of data mining since the beginning of the last decade. In this two-part paper, we have made a comprehensive survey on the recent developments of multiobjective evolutionary algorithms for data mining problems. In this paper, Part I, some basic concepts related to multiobjective optimization and data mining are provided. Subsequently, various multiobjective evolutionary approaches for two major data mining tasks, namely feature selection and classification, are surveyed. In Part II of this paper, we have surveyed different multiobjective evolutionary algorithms for clustering, association rule mining, and several other data mining tasks, and provided a general discussion on the scopes for future research in this domain. |
|---|---|
| AbstractList | The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary algorithms have been found to be particularly useful for automatic processing of large quantities of raw noisy data for optimal parameter setting and to discover significant and meaningful information. Many real-life data mining problems involve multiple conflicting measures of performance, or objectives, which need to be optimized simultaneously. Under this context, multiobjective evolutionary algorithms are gradually finding more and more applications in the domain of data mining since the beginning of the last decade. In this two-part paper, we have made a comprehensive survey on the recent developments of multiobjective evolutionary algorithms for data mining problems. In this paper, Part I, some basic concepts related to multiobjective optimization and data mining are provided. Subsequently, various multiobjective evolutionary approaches for two major data mining tasks, namely feature selection and classification, are surveyed. In Part II of this paper, we have surveyed different multiobjective evolutionary algorithms for clustering, association rule mining, and several other data mining tasks, and provided a general discussion on the scopes for future research in this domain. |
| Author | Maulik, Ujjwal Coello Coello, Carlos Artemio Mukhopadhyay, Anirban Bandyopadhyay, Sanghamitra |
| Author_xml | – sequence: 1 givenname: Anirban surname: Mukhopadhyay fullname: Mukhopadhyay, Anirban email: anirban@klyuniv.ac.in organization: Dept. of Comput. Sci. & Eng., Univ. of Kalyani, Kalyani, India – sequence: 2 givenname: Ujjwal surname: Maulik fullname: Maulik, Ujjwal email: umaulik@cse.jdvu.ac.in organization: Dept. of Comput. Sci. & Eng., Jadavpur Univ., Kolkata, India – sequence: 3 givenname: Sanghamitra surname: Bandyopadhyay fullname: Bandyopadhyay, Sanghamitra email: sanghami@isical.ac.in organization: Machine Intell. Unit, Indian Stat. Inst., Kolkata, India – sequence: 4 givenname: Carlos Artemio surname: Coello Coello fullname: Coello Coello, Carlos Artemio email: ccoello@cs.cinvestav.mx organization: Dept. de Comput. (Evolutionary Comput. Group), CINVESTAV-IPN, Mexico City, Mexico |
| BookMark | eNp9kE1LAzEQhoNUsFZ_gHgJePGyNZNkdxNvpdYvFAU_8LZks1lN2W5qki3037ulxYMHTzMMzzvMPIdo0LrWIHQCZAxA5MXr7H06pgTYmFJJiMj20BAkh4QQmg36ngiZ5Ln4OECHIcwJAZ6CHKL7CX7p_MqssavxY9dE68q50dGuDJ6tXNP1g1b5NZ40n87b-LUIuHYeX6mo8KNtbft5iZ-Vj_juCO3XqgnmeFdH6O169jq9TR6ebu6mk4dEM0ljUmpGBCtrUVVKlimRgpKa01xIzXnFQXMloKYV5XWly8zkTJVlmldZrlPNoGIjdL7du_TuuzMhFgsbtGka1RrXhQJSSiTLAWiPnv1B567zbX9dTxGegWQ9OkL5ltLeheBNXWgb1ebx6JVtCiDFxnGxcVxsHBc7x30S_iSX3i56Xf9mTrcZa4z55bMsFYKl7AdAyIhy |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2021_114737 crossref_primary_10_1109_ACCESS_2019_2963363 crossref_primary_10_1016_j_procs_2016_09_448 crossref_primary_10_1109_TEVC_2022_3215745 crossref_primary_10_1016_j_procs_2017_12_100 crossref_primary_10_1016_j_asoc_2018_04_037 crossref_primary_10_1016_j_neucom_2016_12_045 crossref_primary_10_1109_TCYB_2018_2849442 crossref_primary_10_1007_s10696_018_9309_y crossref_primary_10_1109_ACCESS_2021_3126292 crossref_primary_10_1016_j_eswa_2019_112827 crossref_primary_10_1109_ACCESS_2020_3029773 crossref_primary_10_1109_TEVC_2016_2519758 crossref_primary_10_1137_19M1271439 crossref_primary_10_1016_j_ins_2017_08_043 crossref_primary_10_1109_ACCESS_2021_3115848 crossref_primary_10_1016_j_swevo_2022_101070 crossref_primary_10_1016_j_asoc_2022_108503 crossref_primary_10_1007_s00500_018_3479_0 crossref_primary_10_1016_j_asoc_2019_02_043 crossref_primary_10_1002_widm_1239 crossref_primary_10_1007_s10898_023_01280_1 crossref_primary_10_1109_MCI_2017_2742868 crossref_primary_10_1109_TETCI_2020_3000224 crossref_primary_10_1371_journal_pone_0139190 crossref_primary_10_1007_s00521_021_06459_9 crossref_primary_10_1109_TEVC_2017_2726341 crossref_primary_10_1109_ACCESS_2022_3181524 crossref_primary_10_3390_sym13071133 crossref_primary_10_1109_TEVC_2016_2524555 crossref_primary_10_1002_int_22892 crossref_primary_10_1007_s11277_018_5909_9 crossref_primary_10_1007_s40747_020_00215_7 crossref_primary_10_1109_TNNLS_2015_2504389 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_MCI_2017_2708618 crossref_primary_10_1145_2792984 crossref_primary_10_1007_s00453_019_00666_6 crossref_primary_10_1016_j_ins_2022_01_055 crossref_primary_10_1016_j_ins_2021_10_058 crossref_primary_10_1080_0305215X_2016_1187729 crossref_primary_10_1109_ACCESS_2022_3224012 crossref_primary_10_1016_j_asoc_2017_11_045 crossref_primary_10_1016_j_swevo_2021_100939 crossref_primary_10_1016_j_apenergy_2023_121123 crossref_primary_10_1016_j_asoc_2017_09_033 crossref_primary_10_1016_j_knosys_2016_02_012 crossref_primary_10_1145_3452741 crossref_primary_10_1109_TCBB_2016_2622692 crossref_primary_10_1109_TII_2017_2676000 crossref_primary_10_1016_j_eswa_2017_01_001 crossref_primary_10_1515_jisys_2014_0107 crossref_primary_10_1016_j_engappai_2018_09_009 crossref_primary_10_3390_math10040587 crossref_primary_10_1016_j_heliyon_2021_e07017 crossref_primary_10_1016_j_ins_2018_05_031 crossref_primary_10_1007_s10586_017_0980_7 crossref_primary_10_1016_j_swevo_2017_05_003 crossref_primary_10_1109_TCSS_2022_3188295 crossref_primary_10_1109_TEVC_2015_2433672 crossref_primary_10_1016_j_eswa_2017_07_025 crossref_primary_10_1080_09720529_2021_2014131 crossref_primary_10_1016_j_eswa_2019_113163 crossref_primary_10_1109_ACCESS_2017_2689040 crossref_primary_10_1016_j_jocs_2018_12_010 crossref_primary_10_1007_s12293_015_0176_8 crossref_primary_10_3390_sym13030458 crossref_primary_10_1007_s00500_021_05981_1 crossref_primary_10_1016_j_asoc_2024_111554 crossref_primary_10_1016_j_swevo_2020_100697 crossref_primary_10_3390_sym13020301 crossref_primary_10_29328_journal_jairi_1001003 crossref_primary_10_1007_s40747_022_00963_8 crossref_primary_10_1109_TEVC_2023_3281810 crossref_primary_10_1016_j_neucom_2016_07_080 crossref_primary_10_1109_ACCESS_2025_3536279 crossref_primary_10_1017_S0890060420000311 crossref_primary_10_1145_2742642 crossref_primary_10_1016_j_rser_2016_01_091 crossref_primary_10_1109_TEVC_2023_3314105 crossref_primary_10_1016_j_swevo_2021_100842 crossref_primary_10_3390_a14110338 crossref_primary_10_1016_j_neucom_2019_01_017 crossref_primary_10_1145_2788397 crossref_primary_10_1016_j_eswa_2019_01_035 crossref_primary_10_1016_j_jksuci_2016_12_006 crossref_primary_10_1016_j_jksuci_2021_05_013 crossref_primary_10_1002_ett_4574 crossref_primary_10_1007_s11047_016_9542_9 crossref_primary_10_1109_TEVC_2018_2844286 crossref_primary_10_1109_TEVC_2017_2688863 crossref_primary_10_1016_j_isci_2024_109478 crossref_primary_10_1109_TEVC_2022_3192113 crossref_primary_10_1109_TGRS_2017_2748701 crossref_primary_10_1016_j_swevo_2020_100792 crossref_primary_10_1109_TCYB_2019_2907002 crossref_primary_10_1109_TCBB_2021_3132400 crossref_primary_10_1080_0305215X_2015_1078139 crossref_primary_10_1109_ACCESS_2020_2989219 crossref_primary_10_1089_cmb_2018_0080 crossref_primary_10_3390_a14030076 crossref_primary_10_1016_j_orhc_2024_100430 crossref_primary_10_1109_TEVC_2015_2476359 crossref_primary_10_1007_s00521_022_07985_w crossref_primary_10_1109_ACCESS_2019_2916899 crossref_primary_10_1016_j_knosys_2016_12_011 crossref_primary_10_1016_j_jss_2014_11_043 crossref_primary_10_1002_ett_4618 crossref_primary_10_1016_j_ins_2015_10_010 crossref_primary_10_1109_TCYB_2017_2692385 crossref_primary_10_1007_s10586_018_1767_1 crossref_primary_10_1016_j_asoc_2019_105757 crossref_primary_10_1007_s00521_021_05786_1 crossref_primary_10_1016_j_knosys_2016_04_018 crossref_primary_10_1109_ACCESS_2019_2926579 crossref_primary_10_1016_j_ins_2017_06_031 crossref_primary_10_1109_TEVC_2016_2555315 crossref_primary_10_1007_s00500_016_2422_5 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_26634_jse_11_3_13620 crossref_primary_10_1016_j_swevo_2017_08_005 crossref_primary_10_1016_j_ins_2016_12_037 crossref_primary_10_1088_1741_2552_aa8063 crossref_primary_10_1177_1178622120975829 crossref_primary_10_1016_j_asoc_2022_109321 crossref_primary_10_3390_w11040713 crossref_primary_10_1109_JSYST_2022_3146014 crossref_primary_10_1109_ACCESS_2024_3417334 crossref_primary_10_1007_s11831_024_10109_3 crossref_primary_10_1186_s41044_016_0003_3 crossref_primary_10_1002_widm_1307 crossref_primary_10_1016_j_swevo_2018_02_005 crossref_primary_10_1016_j_neunet_2019_12_005 crossref_primary_10_1109_MCI_2018_2806997 crossref_primary_10_3390_e20090684 crossref_primary_10_1007_s12065_023_00822_6 crossref_primary_10_1007_s00500_017_2923_x crossref_primary_10_1016_j_asoc_2018_10_039 crossref_primary_10_1007_s00521_022_07161_0 crossref_primary_10_1109_MCI_2017_2708578 crossref_primary_10_1007_s10489_018_1245_8 crossref_primary_10_1016_j_psj_2024_103633 crossref_primary_10_1109_TEVC_2013_2290082 crossref_primary_10_1186_s40537_021_00538_3 crossref_primary_10_1016_j_jss_2023_111703 crossref_primary_10_1109_ACCESS_2018_2860791 crossref_primary_10_1016_j_ins_2015_01_018 crossref_primary_10_1016_j_cosrev_2018_12_001 crossref_primary_10_1007_s11227_019_02764_2 crossref_primary_10_1080_1206212X_2018_1521895 crossref_primary_10_1109_MCI_2025_3563425 crossref_primary_10_1016_j_neucom_2015_06_016 crossref_primary_10_1016_j_procs_2016_09_369 crossref_primary_10_1145_3467477 crossref_primary_10_1111_exsy_12485 crossref_primary_10_1016_j_swevo_2019_05_005 crossref_primary_10_1016_j_ins_2020_02_073 crossref_primary_10_1109_TEVC_2017_2695579 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_1109_JSYST_2015_2482602 crossref_primary_10_3233_JIFS_181364 crossref_primary_10_1016_j_neucom_2016_09_078 crossref_primary_10_1016_j_patcog_2016_05_004 crossref_primary_10_1109_JSYST_2015_2469102 crossref_primary_10_3390_automation1010006 crossref_primary_10_1016_j_knosys_2015_01_013 crossref_primary_10_1109_TEVC_2015_2501315 crossref_primary_10_1016_j_asoc_2018_07_045 crossref_primary_10_1080_09540091_2018_1487384 crossref_primary_10_3390_computation9100110 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1007_s00500_016_2475_5 crossref_primary_10_1007_s12665_018_7951_z crossref_primary_10_1109_ACCESS_2020_3014301 crossref_primary_10_1007_s10489_019_01503_7 crossref_primary_10_1007_s00500_015_1907_y crossref_primary_10_1007_s11831_022_09778_9 crossref_primary_10_1162_evco_a_00339 crossref_primary_10_1145_3300148 crossref_primary_10_1016_j_cose_2022_102947 crossref_primary_10_1016_j_neucom_2025_130631 crossref_primary_10_1016_j_swevo_2019_100626 crossref_primary_10_1109_JSEN_2025_3568124 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1007_s10115_019_01342_5 crossref_primary_10_1109_TCYB_2017_2756874 crossref_primary_10_1109_TKDE_2020_3033519 crossref_primary_10_1007_s13748_019_00185_z crossref_primary_10_1007_s44192_023_00047_0 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1515_jisys_2016_0044 crossref_primary_10_1016_j_asoc_2020_106192 crossref_primary_10_1007_s11432_019_2749_0 crossref_primary_10_1108_AAOUJ_01_2017_0012 crossref_primary_10_1109_ACCESS_2024_3521383 |
| Cites_doi | 10.1007/s10898-010-9614-9 10.1007/s00500-009-0460-y 10.1109/ICDAR.2003.1227748 10.1109/CEC.2000.870311 10.1007/s10462-011-9212-3 10.1109/CEC.1999.781913 10.1109/TSMCB.2004.834438 10.4018/jncr.2010040105 10.3233/IDA-2002-6605 10.1145/775047.775053 10.1007/1-84628-284-5 10.1145/170035.170072 10.1109/4235.797969 10.1016/j.ijar.2007.10.004 10.1109/TEVC.2013.2290082 10.1109/FUZZY.2009.5277369 10.1016/j.ejor.2006.08.008 10.1007/978-3-540-87536-9_46 10.1007/s00500-010-0671-2 10.1142/S021800140300271X 10.1109/FUZZ-IEEE.2012.6251174 10.1109/FUZZY.2005.1452432 10.5019/j.ijcir.2006.64 10.1023/A:1026032530166 10.1145/1830483.1830699 10.1007/978-3-642-17144-4_9 10.1126/science.286.5439.531 10.1007/978-3-642-16615-0 10.1007/978-3-642-13214-8_11 10.1016/j.eswa.2008.07.026 10.1145/1276958.1277323 10.1109/FUZZY.2005.1452498 10.1109/ICNN.1997.614135 10.1016/j.asoc.2007.02.009 10.1186/1471-2105-10-27 10.1016/j.patcog.2006.03.003 10.1162/evco.1994.2.3.221 10.1016/S0031-3203(99)00137-5 10.1145/1143997.1144248 10.1109/TPAMI.1979.4766909 10.1109/TPAMI.2002.1114856 10.1145/332306.332564 10.1109/FUZZY.2011.6007436 10.1016/j.ins.2003.03.021 10.1109/4235.996017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TEVC.2013.2290086 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 19 |
| ExternalDocumentID | 3238339381 10_1109_TEVC_2013_2290086 6658835 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Indo-Mexico grantid: DST/INT/MEX/RPO-04/2008 – fundername: Department of Science and Technology, India |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c392t-bc3083bf8dda9b509820f42789c44d41c4a81f2d24fdcb6e73abb57d67c5c31d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 266 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330890700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Sep 28 08:16:58 EDT 2025 Sun Nov 09 06:48:54 EST 2025 Sat Nov 29 03:13:46 EST 2025 Tue Nov 18 22:16:49 EST 2025 Tue Aug 26 16:49:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-bc3083bf8dda9b509820f42789c44d41c4a81f2d24fdcb6e73abb57d67c5c31d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1504619309 |
| PQPubID | 85418 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1520937112 crossref_citationtrail_10_1109_TEVC_2013_2290086 ieee_primary_6658835 crossref_primary_10_1109_TEVC_2013_2290086 proquest_journals_1504619309 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Feb. 2014-02-00 20140201 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-Feb. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref59 pappa (ref54) 2002 ref55 ref11 ref10 horn (ref9) 1993 ref16 ref18 liu (ref50) 2002 corne (ref14) 2000 tseng (ref33) 1997 emmanouilidis (ref37) 2002 goldberg (ref4) 1989 vapnik (ref23) 1998 ref46 ref45 ref47 ref42 ref44 agrawal (ref27) 1994 ref49 golub (ref52) 1999; 286 coello (ref6) 2007 fonseca (ref8) 1993 zitzler (ref12) 2001 bandyopadhyay (ref21) 2005 ref40 venkatadri (ref43) 2010; 1 slonim (ref53) 2000 schaffer (ref7) 1985 emmanouilidis (ref36) 2001; 3 ref35 ref34 suttorp (ref73) 2006; 16 eshelman (ref71) 1993 ref31 bandyopadhyay (ref22) 2007 ref74 ref77 ref76 ref32 (ref20) 1996 ref2 ref1 ref38 deb (ref70) 1995; 9 ishibuchi (ref58) 2005 deb (ref5) 2001 cu llar (ref75) 2007 zitzler (ref19) 1999 ref72 jain (ref24) 1988 morita (ref39) 2003 castillo (ref30) 2006 ref68 ref67 ref26 kim (ref51) 2002; 6 ref25 ref64 ref63 oliveira (ref41) 2006; 16 ref66 ref65 ref28 ref29 wright (ref78) 1991 zitzler (ref17) 2004; 3242 corne (ref15) 2001 han (ref3) 2000 ref60 ref62 ref61 ishibuchi (ref69) 2003 kim (ref48) 2001 |
| References_xml | – ident: ref77 doi: 10.1007/s10898-010-9614-9 – ident: ref64 doi: 10.1007/s00500-009-0460-y – ident: ref40 doi: 10.1109/ICDAR.2003.1227748 – ident: ref35 doi: 10.1109/CEC.2000.870311 – start-page: 285 year: 2005 ident: ref58 article-title: Multiobjective formulations of fuzzy rule-based classification system design publication-title: Proc EUSFLAT Conf – year: 2002 ident: ref37 publication-title: Evolutionary Multi-Objective Feature Selection and ROC Analysis With Application to Industrial Machinery Fault Diagnosis – ident: ref68 doi: 10.1007/s10462-011-9212-3 – ident: ref13 doi: 10.1109/CEC.1999.781913 – volume: 3 start-page: 1 year: 2001 ident: ref36 article-title: A multi-objective genetic algorithm approach to feature selection in neural and fuzzy modeling publication-title: Evolution and Optimization – start-page: 666 year: 2003 ident: ref39 article-title: Unsupervised feature selection using multi-objective genetic algorithm for handwritten word recognition publication-title: Proc ICDAR – ident: ref72 doi: 10.1109/TSMCB.2004.834438 – year: 2007 ident: ref6 publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems – start-page: 759 year: 2001 ident: ref48 article-title: An evolutionary multi-objective local selection algorithm for customer targeting publication-title: Proc CEC – volume: 9 start-page: 115 year: 1995 ident: ref70 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref55 doi: 10.4018/jncr.2010040105 – start-page: 416 year: 1993 ident: ref8 article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization publication-title: Proc 7th Int Conf Genetic Algorithms – start-page: 205 year: 1991 ident: ref78 publication-title: Foundations of Genetic Algorithms – volume: 6 start-page: 531 year: 2002 ident: ref51 article-title: Evolutionary model selection in unsupervised learning publication-title: Intell Data Anal doi: 10.3233/IDA-2002-6605 – ident: ref28 doi: 10.1145/775047.775053 – year: 2000 ident: ref3 publication-title: Data Mining Concepts and Techniques – year: 2005 ident: ref21 publication-title: Advanced Methods for Knowledge Discovery from Complex Data doi: 10.1007/1-84628-284-5 – year: 1989 ident: ref4 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref26 doi: 10.1145/170035.170072 – ident: ref11 doi: 10.1109/4235.797969 – start-page: 487 year: 1994 ident: ref27 article-title: Fast algorithms for mining association rules in large databases publication-title: Proc 20th VLDB – start-page: 359 year: 2007 ident: ref75 article-title: Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: A experimental study publication-title: Proc 9th IWANN – ident: ref63 doi: 10.1016/j.ijar.2007.10.004 – year: 1996 ident: ref20 publication-title: Advances in Knowledge Discovery and Data Mining – year: 1988 ident: ref24 publication-title: Algorithms for clustering data – ident: ref1 doi: 10.1109/TEVC.2013.2290082 – ident: ref61 doi: 10.1109/FUZZY.2009.5277369 – start-page: 95 year: 2001 ident: ref12 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: Proc EUROGEN – ident: ref18 doi: 10.1016/j.ejor.2006.08.008 – ident: ref76 doi: 10.1007/978-3-540-87536-9_46 – start-page: 93 year: 1985 ident: ref7 article-title: Multiple objective optimization with vector evaluated genetic algorithms publication-title: Proc Int Conf Genetic Algorithms and their Appl – ident: ref62 doi: 10.1007/s00500-010-0671-2 – year: 1998 ident: ref23 publication-title: Statistical Learning Theory – ident: ref38 doi: 10.1142/S021800140300271X – ident: ref67 doi: 10.1109/FUZZ-IEEE.2012.6251174 – year: 1993 ident: ref9 publication-title: Multiobjective optimization using the niched Pareto genetic algorithm – start-page: 453 year: 2006 ident: ref30 article-title: Multiobjective optimization of ensembles of multilayer perceptrons for pattern classification publication-title: Proc PPSN IX – ident: ref59 doi: 10.1109/FUZZY.2005.1452432 – ident: ref49 doi: 10.5019/j.ijcir.2006.64 – ident: ref34 doi: 10.1023/A:1026032530166 – start-page: 297 year: 2002 ident: ref50 article-title: Selecting informative genes using a multiobjective evolutionary algorithm publication-title: Proc CEC – ident: ref47 doi: 10.1145/1830483.1830699 – volume: 1 start-page: 443 year: 2010 ident: ref43 article-title: A multiobjective genetic algorithm for feature selection in data mining publication-title: International Journal of Computer and Information Science – ident: ref46 doi: 10.1007/978-3-642-17144-4_9 – start-page: 839 year: 2000 ident: ref14 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization publication-title: Proc PPSN VI Conf – volume: 3242 start-page: 832 year: 2004 ident: ref17 article-title: Indicator-based selection in multiobjective search publication-title: Proc PPSN VIII – start-page: 433 year: 2003 ident: ref69 article-title: An empirical study on the effect of mating restriction on the search ability of emo algorithms publication-title: Proc 2nd EMO – volume: 286 start-page: 531 year: 1999 ident: ref52 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – ident: ref2 doi: 10.1007/978-3-642-16615-0 – volume: 16 start-page: 49 year: 2006 ident: ref41 publication-title: Multiobjective Machine Learning – start-page: 116 year: 2002 ident: ref54 article-title: A multiobjective genetic algorithm for attribute selection publication-title: Proc 4th RASC – year: 1999 ident: ref19 publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications – ident: ref45 doi: 10.1007/978-3-642-13214-8_11 – ident: ref42 doi: 10.1016/j.eswa.2008.07.026 – volume: 16 start-page: 199 year: 2006 ident: ref73 publication-title: Multi-Objective Optimization of Support Vector Machines – start-page: 283 year: 2001 ident: ref15 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization publication-title: Proc GECCO – ident: ref74 doi: 10.1145/1276958.1277323 – ident: ref60 doi: 10.1109/FUZZY.2005.1452498 – start-page: 1612 year: 1997 ident: ref33 article-title: Genetic algorithms for clustering, feature selection, and classification publication-title: Proc IEEE Int Conf Neural Netw doi: 10.1109/ICNN.1997.614135 – year: 2007 ident: ref22 publication-title: Classification and Learning Using Genetic Algorithms Applications in Bioinformatics and Web Intelligence (Natural Computing Series) – ident: ref66 doi: 10.1016/j.asoc.2007.02.009 – ident: ref29 doi: 10.1186/1471-2105-10-27 – ident: ref32 doi: 10.1016/j.patcog.2006.03.003 – ident: ref10 doi: 10.1162/evco.1994.2.3.221 – ident: ref25 doi: 10.1016/S0031-3203(99)00137-5 – ident: ref44 doi: 10.1145/1143997.1144248 – start-page: 187 year: 1993 ident: ref71 publication-title: Foundation of Genetic Algorithms 2 – ident: ref57 doi: 10.1109/TPAMI.1979.4766909 – ident: ref56 doi: 10.1109/TPAMI.2002.1114856 – year: 2001 ident: ref5 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – start-page: 263 year: 2000 ident: ref53 article-title: Class prediction and discovery using gene expression data publication-title: Proc 4th RECOMB doi: 10.1145/332306.332564 – ident: ref65 doi: 10.1109/FUZZY.2011.6007436 – ident: ref31 doi: 10.1016/j.ins.2003.03.021 – ident: ref16 doi: 10.1109/4235.996017 |
| SSID | ssj0014519 |
| Score | 2.5524533 |
| Snippet | The aim of any data mining technique is to build an efficient predictive or descriptive model of a large amount of data. Applications of evolutionary... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4 |
| SubjectTerms | Association rules Biological cells Classification Construction Data mining Data models Evolutionary Evolutionary algorithms Evolutionary computation feature selection Genetic algorithms Itemsets Mathematical models multiobjective evolutionary algorithms Optimization Pareto optimality Tasks |
| Title | A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I |
| URI | https://ieeexplore.ieee.org/document/6658835 https://www.proquest.com/docview/1504619309 https://www.proquest.com/docview/1520937112 |
| Volume | 18 |
| WOSCitedRecordID | wos000330890700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9UfGgf_GzptSpb8Eka3WRz2axvhz1pSxVBW-4t7Ke12Ivkcgf-985u9oLQIvQtkMkH-e3u_DYz8xuAQ-OcUYazpGASNyga10FVpjIpjaYiGzIuZED6O7-8LCcTcbUCn_paGGttSD6zx_4wxPJNref-V9lJge4SGcMqrHJedLVafcTAy6R0yfQCGWM5iRHMlIqTm_HPM5_ExY69uDn1ZdPPfFBoqvLXShzcy_nm_73YFmxEGklGHe7bsGKnO7C5bNFA4ozdgdfP9AZ34duIXM-bhX0ktSOh9LZWv7sVj4wXcRDK5pGM7m_r5q799WdGkNSSz7KV5CK0kjglVzjYyNc38ON8fHP2JYnNFBKNFKhNlGbItpQrjZFCIU1A1-98nw2h89zkqc5lmbrMZLkzWhWWM6nUkJuC66FmqWFvYW1aT-07INSlSkqH1sheMimkoMpxL9SM5KNUZgB0-XkrHZXGfcOL-yrsOKioPCKVR6SKiAzgqL_koZPZeMl410PQG8avP4C9JYZVnIizCvlujntERsUAPvancQr5uIic2nrubTLqZQHT7P2_7_wBXuHz8y5Zew_W2mZu92FdL9q7WXMQxuET8R3adg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgcT2wGBjojDASDwhsjmx28S8VaPTBl01iYL6Fvkn2zSaKU0r7b_n7LjRJBASb5Fyiax8tu9z7u47gPfGOaNMzpIBk3hA0bgPqiKVSWE0FVmf5UIGpMf5ZFLMZuJiAz52tTDW2pB8Zg_9ZYjlm0ov_a-yowG6S2QMD-Bhn_OMttVaXczAC6W06fQCOWMxizHMlIqj6ejHsU_jYode3pz6wul7Xii0VfljLw4O5mTn_4b2FJ5EIkmGLfLPYMPOd2Fn3aSBxDW7C9v3FAf34MuQfFvWK3tHKkdC8W2lrts9j4xWcRrK-o4Mb35W9VVz-WtBkNaSz7KR5Dw0k_hELnC6kbPn8P1kND0-TWI7hUQjCWoSpRnyLeUKY6RQSBTQ-TvfaUNozg1PNZdF6jKTcWe0GticSaX6uRnkuq9Zatg-bM6ruX0BhLpUSenQGvlLJoUUVLncSzUj_SiU6QFdf95SR61x3_LipgxnDipKj0jpESkjIj340D1y2wpt_Mt4z0PQGcav34ODNYZlXIqLEhkvx1Mio6IH77rbuIh8ZETObbX0Nhn1woBp9vLvb34Lj0-n5-NyfDb5-gq2cCy8Td0-gM2mXtrX8EivmqtF_SbMyd91m929 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Multiobjective+Evolutionary+Algorithms+for+Data+Mining%3A+Part+I&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Mukhopadhyay%2C+Anirban&rft.au=Maulik%2C+Ujjwal&rft.au=Bandyopadhyay%2C+Sanghamitra&rft.au=Coello+Coello%2C+Carlos+Artemio&rft.date=2014-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=18&rft.issue=1&rft.spage=4&rft.epage=19&rft_id=info:doi/10.1109%2FTEVC.2013.2290086&rft.externalDocID=6658835 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |