A fast and low-complexity matrix inversion scheme based on CSM method for massive MIMO systems
Massive multiple-input-multiple-output (MIMO), also known as very-large MIMO systems, is an attracting technique in 5G and can provide higher rates and power efficiency than 4G. Linear-precoding schemes are able to achieve the near optimal performance, and thus are more attractive than non-linear pr...
Saved in:
| Published in: | EURASIP journal on wireless communications and networking Vol. 2016; no. 1; pp. 1 - 6 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
19.10.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Massive multiple-input-multiple-output (MIMO), also known as very-large MIMO systems, is an attracting technique in 5G and can provide higher rates and power efficiency than 4G. Linear-precoding schemes are able to achieve the near optimal performance, and thus are more attractive than non-linear precoding schemes. However, conventional linear precoding schemes in massive MIMO systems, such as regularized zero-forcing (RZF) precoding, have near-optimal performance but suffer from high computational complexity due to the required matrix inversion of large size. To solve this problem, we utilize the Cholesky-decomposition and Sherman-Morrison lemma and propose CSM (Cholesky and Sherman-Morrison strategy)-based precoding scheme to the matrix inversion by exploiting the asymptotically orthogonal channel property in massive MIMO systems. Results are evaluated numerically in terms of bit-error-rate (BER)and average sum rate. Comparing with the Neumann series approximation of inversing matrix, it is concluded that, with fewer operations, the performance of CSM-based precoding is better than conventional methods in massive MIMO configurations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1687-1499 1687-1472 1687-1499 |
| DOI: | 10.1186/s13638-016-0749-3 |