SADI approach programming on GPU: convective heat transfer of nanofluids flow inside a wavy channel

In this study, the numerical simulation of convective heat transfer of nanofluids (Al 2 O 3 /water and CuO/water) inside a sinusoidal wavy channel is performed using the Graphics Processing Units (GPU). The governing equations including stream-function, vorticity transport, and energy are discretize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry Jg. 146; H. 1; S. 31 - 46
Hauptverfasser: Taghavi, S. M. H., Akbarzadeh, P., Mahmoodi Darian, H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.10.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:1388-6150, 1588-2926
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the numerical simulation of convective heat transfer of nanofluids (Al 2 O 3 /water and CuO/water) inside a sinusoidal wavy channel is performed using the Graphics Processing Units (GPU). The governing equations including stream-function, vorticity transport, and energy are discretized using the fourth-order Spline Alternating-Direction Implicit (SADI) approach in combination with the curvilinear coordinates mapping. The final tridiagonal-matrices are solved by Parallel-Thomas-Algorithm (PTA) on GPU. A homogenous one-phase model is also applied to consider the effective characteristics of the nanofluids flow. In the first part of the results section, the effects of nanoparticle volume fraction, Reynolds number, and amplitude of the wavy wall on average Nusselt number and the skin friction coefficient of the channel are investigated. In the second part of the results section, the ability of GPU to accelerate the computation (or runtimes) is compared to the classic Thomas algorithm that runs on a Central Processing Unit (CPU). The results demonstrate that the speedup of PTA against CPU runtime for the finest grid is around 18.32×.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-020-09924-0