Detection of total reactive oxygen species in adherent cells by 2', 7'-dichlorodihydrofluorescein diacetate staining
Oxidative stress is an important event under both physiological and pathological conditions. In this study, we demonstrate how to quantify oxidative stress by measuring total reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining in colorectal can...
Saved in:
| Published in: | Journal of visualized experiments no. 160 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
23.06.2020
|
| Subjects: | |
| ISSN: | 1940-087X, 1940-087X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Oxidative stress is an important event under both physiological and pathological conditions. In this study, we demonstrate how to quantify oxidative stress by measuring total reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining in colorectal cancer cell lines as an example. This protocol describes detailed steps including preparation of DCFH-DA solution, incubation of cells with DCFH-DA solution, and measurement of normalized intensity. DCFH-DA staining is a simple and cost-effective way to detect ROS in cells. It can be used to measure ROS generation after chemical treatment or genetic modifications. Therefore, it is useful for determining cellular oxidative stress upon environment stress, providing clues to mechanistic studies.Oxidative stress is an important event under both physiological and pathological conditions. In this study, we demonstrate how to quantify oxidative stress by measuring total reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining in colorectal cancer cell lines as an example. This protocol describes detailed steps including preparation of DCFH-DA solution, incubation of cells with DCFH-DA solution, and measurement of normalized intensity. DCFH-DA staining is a simple and cost-effective way to detect ROS in cells. It can be used to measure ROS generation after chemical treatment or genetic modifications. Therefore, it is useful for determining cellular oxidative stress upon environment stress, providing clues to mechanistic studies. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 1940-087X 1940-087X |
| DOI: | 10.3791/60682 |