Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior

Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 130; no. 7; pp. 1754 - 1769
Main Authors: Zhang, Kaihao, Luo, Wenhan, Yu, Yanjiang, Ren, Wenqi, Zhao, Fang, Li, Changsheng, Ma, Lin, Liu, Wei, Li, Hongdong
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. https://github.com/HDCVLab/Stereo-Image-Deraining .
AbstractList Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. https://github.com/HDCVLab/Stereo-Image-Deraining.
Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance. https://github.com/HDCVLab/Stereo-Image-Deraining .
Audience Academic
Author Yu, Yanjiang
Li, Changsheng
Liu, Wei
Ren, Wenqi
Ma, Lin
Zhang, Kaihao
Luo, Wenhan
Zhao, Fang
Li, Hongdong
Author_xml – sequence: 1
  givenname: Kaihao
  surname: Zhang
  fullname: Zhang, Kaihao
  organization: Australian National University
– sequence: 2
  givenname: Wenhan
  orcidid: 0000-0002-5697-4168
  surname: Luo
  fullname: Luo, Wenhan
  email: whluo.china@gmail.com
  organization: Sun Yat-sen University
– sequence: 3
  givenname: Yanjiang
  surname: Yu
  fullname: Yu, Yanjiang
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Wenqi
  surname: Ren
  fullname: Ren, Wenqi
  organization: Sun Yat-sen University
– sequence: 5
  givenname: Fang
  surname: Zhao
  fullname: Zhao, Fang
  organization: Inception Institute of Artificial Intelligence
– sequence: 6
  givenname: Changsheng
  surname: Li
  fullname: Li, Changsheng
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Meituan Group
– sequence: 8
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Tencent
– sequence: 9
  givenname: Hongdong
  surname: Li
  fullname: Li, Hongdong
  organization: Australian National University
BookMark eNp9kctOHDEQRa0IpAyPH8iqpayyaLCr_ersCG-JJCMmydYybntk0mOD7dHA32PoSIgskBclVZ1jy3V30FaIwSL0ieADgrE4zIQA71oM0GLCAbebD2hGmOhaQjHbQjPc1ybjPfmIdnK-xRiDhG6G5t_sYwxD8z2GaNajTs2JTdoHH5Zfm7lOehzt2CyKTTa-jpoftmxi-tv88bpZ2JUOxZtmnnxMe2jb6THb_X91F_0-O_11fNFe_Ty_PD66ak3XQ2mpY84wzMQg6M2ALQjHOHQOiOEDpTdaUEmdBimYg8EwqTGnopcaBmF5D90u-jzde5fi_drmom7jOoX6pAIuCUjK-75SBxO11KNVPrhYkjb1DHblTd2h87V_JLCkEjgjVfjyRqhMsQ9lqdc5q8vF9VtWTqxJMedknTK-6OKrUvc0KoLVczhqCkfVcNRLOGpTVfhPvUt-pdPj-1I3SbnCYWnT65ffsZ4A72OiKA
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128308
crossref_primary_10_1109_ACCESS_2024_3523419
crossref_primary_10_1109_TCSVT_2024_3480930
crossref_primary_10_1109_TCSVT_2025_3532321
crossref_primary_10_1109_TMM_2022_3214780
crossref_primary_10_3390_computers14010011
crossref_primary_10_1016_j_patrec_2024_01_006
crossref_primary_10_1109_TCI_2025_3527142
crossref_primary_10_1109_TIV_2023_3347952
crossref_primary_10_1016_j_engappai_2025_110490
crossref_primary_10_1016_j_jvcir_2024_104117
crossref_primary_10_1109_TCSVT_2024_3516074
crossref_primary_10_1016_j_displa_2024_102736
crossref_primary_10_1007_s11760_023_02649_1
crossref_primary_10_1016_j_eswa_2023_121339
crossref_primary_10_1007_s11263_024_02148_x
crossref_primary_10_1016_j_neucom_2024_127752
crossref_primary_10_3390_electronics14071447
crossref_primary_10_1016_j_patcog_2024_110370
crossref_primary_10_1016_j_knosys_2025_114086
crossref_primary_10_1109_TASE_2025_3539632
crossref_primary_10_1109_TPAMI_2024_3442955
crossref_primary_10_1109_LSP_2025_3586178
crossref_primary_10_1016_j_eswa_2023_122592
crossref_primary_10_1109_TIP_2023_3334556
crossref_primary_10_1016_j_patcog_2024_110840
crossref_primary_10_1109_TGRS_2023_3346041
crossref_primary_10_1088_1361_6501_ad916b
crossref_primary_10_3390_s22134707
crossref_primary_10_1007_s00138_025_01710_y
crossref_primary_10_1016_j_patcog_2024_110743
crossref_primary_10_1109_LSP_2025_3561724
crossref_primary_10_1109_TCSVT_2024_3450971
crossref_primary_10_1016_j_eswa_2025_126857
crossref_primary_10_3390_futuretransp5020039
crossref_primary_10_1109_TCE_2025_3534680
crossref_primary_10_1109_TITS_2023_3277709
crossref_primary_10_1049_ipr2_70089
crossref_primary_10_1109_TCSVT_2023_3299324
crossref_primary_10_1109_TIP_2023_3234692
crossref_primary_10_1016_j_neunet_2024_106428
crossref_primary_10_1109_TMM_2024_3368918
crossref_primary_10_1016_j_displa_2024_102842
crossref_primary_10_1016_j_cviu_2023_103819
crossref_primary_10_1016_j_neunet_2024_106464
crossref_primary_10_1016_j_neucom_2023_127066
crossref_primary_10_1016_j_knosys_2023_110890
crossref_primary_10_1109_TPAMI_2023_3307666
Cites_doi 10.1109/TIP.2020.2973802
10.1109/TIP.2018.2867733
10.1177/0278364913491297
10.1109/TCSVT.2019.2920407
10.1109/TPAMI.2020.2995190
10.1109/TMM.2013.2284759
10.1109/TIP.2011.2179057
10.1049/iet-ipr.2010.0547
10.1109/TIP.2018.2869722
10.1109/TPAMI.2019.2895793
10.1109/TIP.2013.2290595
10.1109/TIP.2015.2428933
10.1007/s11263-008-0200-2
10.1109/TIP.2017.2691802
10.1007/s11263-019-01288-9
10.1109/CVPR.2017.699
10.1109/CVPR42600.2020.01256
10.1109/CVPR42600.2020.00861
10.1109/CVPR.2018.00185
10.1109/CVPR.2019.00176
10.1109/ICCV.2015.312
10.1109/CVPR.2018.00341
10.1109/CVPR.2016.614
10.1007/978-3-030-58583-9_5
10.1109/CVPR.2017.660
10.1109/CVPR.2019.01125
10.1109/ICME.2006.262572
10.1109/CVPR.2016.299
10.1109/TPAMI.2021.3083076
10.1109/CVPR.2017.186
10.1109/CVPR.2015.7299097
10.1109/CVPR.2019.00821
10.1109/IROS.2005.1545103
10.1109/ICCV.2013.247
10.1007/s11263-014-0759-8
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.276
10.1109/CVPR.2019.00860
10.1109/CVPR.2018.00682
10.1609/aaai.v33i01.33019203
10.1109/CVPR42600.2020.01457
10.1109/TIP.2021.3104166
10.1109/CVPR42600.2020.00281
10.1007/978-3-030-58610-2_12
10.1007/978-3-319-46475-6_10
10.1109/ICCV.2015.388
10.1109/CVPR.2017.183
10.1007/978-3-030-01234-2_16
10.1109/CVPR.2018.00337
10.1109/ICCV.2013.84
10.1109/CVPR.2015.7299152
10.1109/CVPR.2018.00079
10.1109/CVPR.2018.00696
10.1109/CVPR42600.2020.00280
10.1109/CVPR.2017.301
10.1109/ICIP.2014.7026099
10.1109/WACV.2017.145
10.1109/CVPR.2016.350
10.1109/CVPR42600.2020.00324
10.1109/CVPR.2019.00781
10.1109/ICCV48922.2021.01450
10.1109/CVPR.2018.00862
10.1109/ICCV.2017.275
10.1109/ICCV.2019.00740
10.1109/CVPR.2017.19
10.1109/CVPR46437.2021.01458
10.1109/CVPR.2018.00567
10.1145/1179352.1141985
10.1109/CVPR.2018.00263
10.1109/TPAMI.2022.3148707
10.1007/978-3-030-01267-0_2
10.1109/CVPR.2016.90
10.1109/CVPR46437.2021.00763
10.1109/CVPR.2018.00658
10.1109/CVPR.2004.1315077
10.1007/978-3-540-89689-0_49
10.1109/TIP.2021.3108019
10.1109/ICCVW.2017.108
10.1007/s11263-022-01633-5
10.1109/CVPR.2017.303
10.1109/CVPR.2019.00396
10.1109/CVPR.2019.00173
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-022-01620-w
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1769
ExternalDocumentID A708482651
10_1007_s11263_022_01620_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c392t-4f5fc5057d74bd0e27f5623f21c6d44ba7484fa2875f2dc58a064798a2d7e6923
IEDL.DBID RSV
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796848800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 02:15:47 EST 2025
Sat Nov 29 10:36:11 EST 2025
Mon Nov 24 14:35:43 EST 2025
Tue Nov 18 21:22:03 EST 2025
Sat Nov 29 06:42:29 EST 2025
Fri Feb 21 02:46:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Parallel stereo network
Stereo image deraining
View fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-4f5fc5057d74bd0e27f5623f21c6d44ba7484fa2875f2dc58a064798a2d7e6923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5697-4168
PQID 2681284699
PQPubID 1456341
PageCount 16
ParticipantIDs proquest_journals_2681284699
gale_infotracacademiconefile_A708482651
gale_incontextgauss_ISR_A708482651
crossref_citationtrail_10_1007_s11263_022_01620_w
crossref_primary_10_1007_s11263_022_01620_w
springer_journals_10_1007_s11263_022_01620_w
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Kang, Lin, Fu (CR25) 2011; 21
CR38
CR37
CR36
CR35
CR79
CR34
CR78
CR33
CR77
CR32
CR76
CR31
CR75
CR30
CR74
CR73
CR72
CR71
CR70
Liu, Xu, Liu, Tang (CR39) 2009; 2
CR2
CR4
CR3
CR6
CR5
CR7
CR9
CR49
CR48
CR47
CR46
Huang, Kang, Wang, Lin (CR22) 2013; 16
CR45
Yasarla, Patel (CR65) 2020; 29
CR44
Tripathi, Mukhopadhyay (CR56) 2012; 6
CR88
CR43
CR87
CR42
CR86
CR41
CR85
Shen, Lai, Xu, Kautz, Yang (CR53) 2020; 128
CR84
CR83
Zhang, Sindagi, Patel (CR82) 2019; 30
Geiger, Lenz, Stiller, Urtasun (CR17) 2013; 32
CR80
Barnum, Narasimhan, Kanade (CR1) 2010; 86
CR19
Yang, Tan, Feng, Guo, Yan, Liu (CR61) 2019; 42
CR18
Liu, Yang, Yang, Guo (CR40) 2018; 28
CR16
CR15
CR59
CR58
CR13
CR57
CR12
CR11
CR55
CR10
CR54
CR52
CR51
CR50
Chen, Chau (CR8) 2013; 23
Kim, Sim, Kim (CR27) 2015; 24
CR29
CR28
Fu, Huang, Ding, Liao, Paisley (CR14) 2017; 26
CR26
CR69
CR24
CR68
CR23
CR67
CR66
CR21
CR20
Yang, Tan, Wang, Fang, Liu (CR62) 2020; 43
CR64
CR63
CR60
Zhang, Luo, Zhong, Ma, Liu, Li (CR81) 2018; 28
1620_CR49
DA Huang (1620_CR22) 2013; 16
1620_CR80
1620_CR84
1620_CR83
1620_CR44
1620_CR88
1620_CR43
1620_CR87
1620_CR42
1620_CR86
1620_CR41
1620_CR85
1620_CR48
JH Kim (1620_CR27) 2015; 24
1620_CR47
1620_CR46
1620_CR45
1620_CR19
1620_CR18
J Liu (1620_CR40) 2018; 28
1620_CR16
W Yang (1620_CR62) 2020; 43
P Liu (1620_CR39) 2009; 2
H Zhang (1620_CR82) 2019; 30
Z Shen (1620_CR53) 2020; 128
J Chen (1620_CR8) 2013; 23
1620_CR51
1620_CR50
1620_CR11
1620_CR55
1620_CR10
1620_CR54
X Fu (1620_CR14) 2017; 26
1620_CR52
PC Barnum (1620_CR1) 2010; 86
1620_CR15
1620_CR59
1620_CR58
1620_CR13
1620_CR57
W Yang (1620_CR61) 2019; 42
1620_CR12
1620_CR7
1620_CR29
1620_CR28
1620_CR9
1620_CR4
1620_CR3
1620_CR6
1620_CR5
1620_CR2
LW Kang (1620_CR25) 2011; 21
1620_CR60
1620_CR66
1620_CR21
1620_CR20
1620_CR64
1620_CR63
1620_CR26
R Yasarla (1620_CR65) 2020; 29
1620_CR69
1620_CR24
1620_CR68
1620_CR23
1620_CR67
1620_CR38
A Geiger (1620_CR17) 2013; 32
A Tripathi (1620_CR56) 2012; 6
K Zhang (1620_CR81) 2018; 28
1620_CR73
1620_CR72
1620_CR71
1620_CR70
1620_CR33
1620_CR77
1620_CR32
1620_CR76
1620_CR31
1620_CR75
1620_CR30
1620_CR74
1620_CR37
1620_CR36
1620_CR35
1620_CR79
1620_CR34
1620_CR78
References_xml – ident: CR45
– ident: CR70
– volume: 29
  start-page: 4544
  year: 2020
  end-page: 4555
  ident: CR65
  article-title: Confidence measure guided single image de-raining
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2973802
– ident: CR49
– ident: CR68
– ident: CR74
– ident: CR4
– ident: CR87
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 28
  start-page: 291
  issue: 1
  year: 2018
  end-page: 301
  ident: CR81
  article-title: Adversarial spatio-temporal learning for video deblurring
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2018.2867733
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  end-page: 1237
  ident: CR17
  article-title: Vision meets robotics: The kitti dataset
  publication-title: The International Journal of Robotics Research (IJRR)
  doi: 10.1177/0278364913491297
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR80
– ident: CR77
– ident: CR58
– ident: CR84
– ident: CR42
– ident: CR21
– ident: CR46
– ident: CR71
– ident: CR19
– volume: 30
  start-page: 3943
  issue: 11
  year: 2019
  end-page: 3956
  ident: CR82
  article-title: Image de-raining using a conditional generative adversarial network
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
  doi: 10.1109/TCSVT.2019.2920407
– volume: 43
  start-page: 4059
  issue: 11
  year: 2020
  end-page: 4077
  ident: CR62
  article-title: Single image deraining: From model-based to data-driven and beyond
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2995190
– volume: 16
  start-page: 83
  issue: 1
  year: 2013
  end-page: 93
  ident: CR22
  article-title: Self-learning based image decomposition with applications to single image denoising
  publication-title: IEEE Transactions on Multimedia (TMM)
  doi: 10.1109/TMM.2013.2284759
– ident: CR67
– ident: CR75
– ident: CR15
– ident: CR88
– ident: CR50
– ident: CR11
– ident: CR9
– ident: CR57
– ident: CR32
– ident: CR60
– ident: CR36
– ident: CR78
– ident: CR85
– ident: CR5
– volume: 21
  start-page: 1742
  issue: 4
  year: 2011
  end-page: 1755
  ident: CR25
  article-title: Automatic single-image-based rain streaks removal via image decomposition
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2011.2179057
– ident: CR64
– ident: CR26
– ident: CR18
– ident: CR43
– ident: CR66
– ident: CR47
– volume: 6
  start-page: 181
  issue: 2
  year: 2012
  end-page: 196
  ident: CR56
  article-title: Video post processing: Low-latency spatiotemporal approach for detection and removal of rain
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2010.0547
– ident: CR72
– volume: 28
  start-page: 699
  issue: 2
  year: 2018
  end-page: 712
  ident: CR40
  article-title: D3r-net: Dynamic routing residue recurrent network for video rain removal
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2018.2869722
– volume: 42
  start-page: 1377
  issue: 6
  year: 2019
  end-page: 1393
  ident: CR61
  article-title: Joint rain detection and removal from a single image with contextualized deep networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2895793
– ident: CR2
– ident: CR37
– ident: CR30
– volume: 23
  start-page: 1097
  year: 2013
  end-page: 1104
  ident: CR8
  article-title: A rain pixel recovery algorithm for videos with highly dynamic scenes
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2013.2290595
– ident: CR10
– ident: CR33
– ident: CR6
– ident: CR79
– ident: CR86
– volume: 24
  start-page: 2658
  issue: 9
  year: 2015
  end-page: 2670
  ident: CR27
  article-title: Video deraining and desnowing using temporal correlation and low-rank matrix completion
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2015.2428933
– ident: CR63
– ident: CR23
– ident: CR69
– ident: CR44
– ident: CR48
– ident: CR73
– volume: 2
  start-page: 53
  issue: 1
  year: 2009
  end-page: 60
  ident: CR39
  article-title: Pixel based temporal analysis using chromatic property for removing rain from videos
  publication-title: Computer and Information Science
– ident: CR3
– ident: CR38
– ident: CR52
– ident: CR31
– ident: CR13
– volume: 86
  start-page: 256
  year: 2010
  end-page: 274
  ident: CR1
  article-title: Analysis of rain and snow in frequency space
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-008-0200-2
– ident: CR34
– ident: CR55
– ident: CR7
– ident: CR59
– ident: CR76
– ident: CR83
– volume: 26
  start-page: 2944
  issue: 6
  year: 2017
  end-page: 2956
  ident: CR14
  article-title: Clearing the skies: A deep network architecture for single-image rain removal
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2017.2691802
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 128
  start-page: 1829
  issue: 7
  year: 2020
  end-page: 1846
  ident: CR53
  article-title: Exploiting semantics for face image deblurring
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01288-9
– ident: CR20
– ident: 1620_CR18
  doi: 10.1109/CVPR.2017.699
– ident: 1620_CR80
  doi: 10.1109/CVPR42600.2020.01256
– ident: 1620_CR70
  doi: 10.1109/CVPR42600.2020.00861
– volume: 29
  start-page: 4544
  year: 2020
  ident: 1620_CR65
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2973802
– ident: 1620_CR23
  doi: 10.1109/CVPR.2018.00185
– ident: 1620_CR58
  doi: 10.1109/CVPR.2019.00176
– ident: 1620_CR5
  doi: 10.1109/ICCV.2015.312
– ident: 1620_CR38
  doi: 10.1109/CVPR.2018.00341
– ident: 1620_CR42
  doi: 10.1109/CVPR.2016.614
– ident: 1620_CR77
  doi: 10.1007/978-3-030-58583-9_5
– ident: 1620_CR83
  doi: 10.1109/CVPR.2017.660
– ident: 1620_CR87
  doi: 10.1109/CVPR.2019.01125
– ident: 1620_CR74
  doi: 10.1109/ICME.2006.262572
– volume: 86
  start-page: 256
  year: 2010
  ident: 1620_CR1
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-008-0200-2
– ident: 1620_CR34
  doi: 10.1109/CVPR.2016.299
– ident: 1620_CR60
  doi: 10.1109/TPAMI.2021.3083076
– ident: 1620_CR13
  doi: 10.1109/CVPR.2017.186
– ident: 1620_CR51
  doi: 10.1109/CVPR.2015.7299097
– ident: 1620_CR55
– ident: 1620_CR21
  doi: 10.1109/CVPR.2019.00821
– ident: 1620_CR54
  doi: 10.1109/IROS.2005.1545103
– volume: 2
  start-page: 53
  issue: 1
  year: 2009
  ident: 1620_CR39
  publication-title: Computer and Information Science
– ident: 1620_CR4
  doi: 10.1109/ICCV.2013.247
– ident: 1620_CR50
  doi: 10.1007/s11263-014-0759-8
– ident: 1620_CR41
  doi: 10.1109/CVPR.2015.7298965
– ident: 1620_CR88
  doi: 10.1109/ICCV.2017.276
– volume: 28
  start-page: 291
  issue: 1
  year: 2018
  ident: 1620_CR81
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2018.2867733
– ident: 1620_CR63
  doi: 10.1109/CVPR.2019.00860
– ident: 1620_CR31
  doi: 10.1109/CVPR.2018.00682
– ident: 1620_CR76
  doi: 10.1609/aaai.v33i01.33019203
– ident: 1620_CR10
  doi: 10.1109/CVPR42600.2020.01457
– ident: 1620_CR75
  doi: 10.1109/TIP.2021.3104166
– ident: 1620_CR78
  doi: 10.1109/CVPR42600.2020.00281
– ident: 1620_CR44
  doi: 10.1007/978-3-030-58610-2_12
– volume: 42
  start-page: 1377
  issue: 6
  year: 2019
  ident: 1620_CR61
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2895793
– ident: 1620_CR47
  doi: 10.1007/978-3-319-46475-6_10
– ident: 1620_CR43
  doi: 10.1109/ICCV.2015.388
– ident: 1620_CR59
  doi: 10.1109/CVPR.2017.183
– ident: 1620_CR35
  doi: 10.1007/978-3-030-01234-2_16
– volume: 128
  start-page: 1829
  issue: 7
  year: 2020
  ident: 1620_CR53
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01288-9
– ident: 1620_CR68
  doi: 10.1109/CVPR.2018.00337
– volume: 6
  start-page: 181
  issue: 2
  year: 2012
  ident: 1620_CR56
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2010.0547
– ident: 1620_CR11
  doi: 10.1109/ICCV.2013.84
– ident: 1620_CR37
  doi: 10.1109/CVPR.2015.7299152
– ident: 1620_CR69
  doi: 10.1109/CVPR.2018.00079
– ident: 1620_CR7
  doi: 10.1109/CVPR.2018.00696
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  ident: 1620_CR17
  publication-title: The International Journal of Robotics Research (IJRR)
  doi: 10.1177/0278364913491297
– volume: 16
  start-page: 83
  issue: 1
  year: 2013
  ident: 1620_CR22
  publication-title: IEEE Transactions on Multimedia (TMM)
  doi: 10.1109/TMM.2013.2284759
– ident: 1620_CR64
  doi: 10.1109/CVPR42600.2020.00280
– ident: 1620_CR20
– ident: 1620_CR24
  doi: 10.1109/CVPR.2017.301
– ident: 1620_CR26
  doi: 10.1109/ICIP.2014.7026099
– ident: 1620_CR86
– volume: 43
  start-page: 4059
  issue: 11
  year: 2020
  ident: 1620_CR62
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2995190
– ident: 1620_CR67
  doi: 10.1109/WACV.2017.145
– ident: 1620_CR9
  doi: 10.1109/CVPR.2016.350
– volume: 30
  start-page: 3943
  issue: 11
  year: 2019
  ident: 1620_CR82
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
  doi: 10.1109/TCSVT.2019.2920407
– ident: 1620_CR32
  doi: 10.1109/CVPR42600.2020.00324
– ident: 1620_CR49
  doi: 10.1109/CVPR.2019.00781
– ident: 1620_CR73
  doi: 10.1109/ICCV48922.2021.01450
– volume: 26
  start-page: 2944
  issue: 6
  year: 2017
  ident: 1620_CR14
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2017.2691802
– ident: 1620_CR52
  doi: 10.1109/CVPR.2018.00862
– ident: 1620_CR57
  doi: 10.1109/ICCV.2017.275
– ident: 1620_CR33
  doi: 10.1109/ICCV.2019.00740
– ident: 1620_CR28
  doi: 10.1109/CVPR.2017.19
– volume: 28
  start-page: 699
  issue: 2
  year: 2018
  ident: 1620_CR40
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2018.2869722
– ident: 1620_CR66
  doi: 10.1109/CVPR46437.2021.01458
– ident: 1620_CR3
  doi: 10.1109/CVPR.2018.00567
– ident: 1620_CR16
  doi: 10.1145/1179352.1141985
– volume: 21
  start-page: 1742
  issue: 4
  year: 2011
  ident: 1620_CR25
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2011.2179057
– ident: 1620_CR46
  doi: 10.1109/CVPR.2018.00263
– ident: 1620_CR71
  doi: 10.1109/TPAMI.2022.3148707
– ident: 1620_CR84
  doi: 10.1007/978-3-030-01267-0_2
– ident: 1620_CR19
  doi: 10.1109/CVPR.2016.90
– ident: 1620_CR12
– ident: 1620_CR85
– volume: 24
  start-page: 2658
  issue: 9
  year: 2015
  ident: 1620_CR27
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2015.2428933
– ident: 1620_CR36
  doi: 10.1109/CVPR46437.2021.00763
– ident: 1620_CR6
  doi: 10.1109/CVPR.2018.00658
– ident: 1620_CR15
  doi: 10.1109/CVPR.2004.1315077
– ident: 1620_CR2
  doi: 10.1007/978-3-540-89689-0_49
– ident: 1620_CR72
  doi: 10.1109/TIP.2021.3108019
– volume: 23
  start-page: 1097
  year: 2013
  ident: 1620_CR8
  publication-title: IEEE Transactions on Image Processing (TIP)
  doi: 10.1109/TIP.2013.2290595
– ident: 1620_CR45
  doi: 10.1109/ICCVW.2017.108
– ident: 1620_CR79
  doi: 10.1007/s11263-022-01633-5
– ident: 1620_CR48
  doi: 10.1109/CVPR.2017.303
– ident: 1620_CR29
  doi: 10.1109/CVPR.2019.00396
– ident: 1620_CR30
  doi: 10.1109/CVPR.2019.00173
SSID ssj0002823
Score 2.6051698
Snippet Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1754
SubjectTerms Algorithms
Artificial Intelligence
Computer Imaging
Computer Science
Computer vision
Datasets
Feature extraction
Image Processing and Computer Vision
Image quality
Image segmentation
Machine vision
Pattern Recognition
Pattern Recognition and Graphics
Rain
Semantic segmentation
Semantics
Vision
Vision systems
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90-uCL8xOnU4IIPmhxremXLzL8QEHHcCq-hTRJZTBbbTf375trU4uKvvjaJG3K73K5S-7uB7AXiIgL-5haUnSOLUqVb3ERKiuQ2hihHDfNAukbv9cLnp7Cvjlwy01YZaUTC0UtU4Fn5EcOFsrSm2UYnr6-WcgahberhkJjFubQssGQvtvO2acm1u5ESSWvXSTXC22TNFOmztlOcYOJgQmebp9-2Zi-q-cf96TF9nPZ_O_El2DRGJ6kW0rKMsyoZAWaxgglZonn-lHF81A9W4V-meZC9PpPi7BVcq4Ms8QJ6fMM6VhGZKDHqLRuIr0ywpw8DjkZqBcN4VCQfjZMszV4uLy4P7uyDBODJbT9NLZo7MYCXRnp00h2lOPHaDfFji08SWnEsSJpzLX35caOFG7AMYc1DLgjfeVpG3IdGkmaqA0gnh9qpy2IVCA7lLsyiri0PYncRUIFXLXArmBgwpQpR7aMEasLLCN0TEPHCujYtAUHn2NeyyIdf_beRXQZVr9IMLzmmU_ynF0P7ljXR3oBx3PtFuybTnGqPy-4yVbQP4EFs770bFe4M7P-c1aD3oLDSnLq5t8nt_n327ZgwSlkFuOF29AYZxO1DfPifTzMs51C-j8A3w4ITg
  priority: 102
  providerName: ProQuest
Title Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior
URI https://link.springer.com/article/10.1007/s11263-022-01620-w
https://www.proquest.com/docview/2681284699
Volume 130
WOSCitedRecordID wos000796848800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8N2MNeYINNlI_KmibxwCI1qRM7ewMG2rStitqNsb1Yju2gStCgpMC_v7vEoQK2SduLpdjnxLHv7Dv57n4Ab6TJtQmHPLBmMAw4dyLQJnWBtKiMcE2HZrPSn8VoJM_O0swHhdWdt3t3Jdns1ItgtzBq7hzJlSBBo-d2CVbwuJME2DCenN7tv2hEtADySBMnaehDZX7_jnvH0cNN-dHtaHPonKz933Cfw6pXMtlByxUv4ImbrcOaVziZF-caqzpMh65uA7I2pIWhrJeNiyp77zyKxDuW6YqgVy7YBPu4ctHERq03OTudajZxl7hcU8OyalpWL-HbyfHXow-BR10IDOpK84AXcWHIbLGC53bgIlGQjlREoUks57mm7KOFRksrLiJrYqkpXjWVOrLCJagvvoLlWTlzm8ASkaKBJnMn7YDr2Oa5tmFiCafIOKldD8Ju8pXxKckJGeNCLZIp0ywqnEXVzKK67cH-XZ-rNiHHX6lf05oqynQxI1eac31d1-rjZKwOBEEJREkc9mDPExUlft5oH5mAP0HJse5R7nS8obys1yqiFG6oxqVpD952vLBo_vPgtv6NfBueRQ07ka_wDizPq2u3C0_NzXxaV31YEt9_9GHl8HiUjfHpkwiw_DI4wjKLf_YbGfkF-IcEOw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NAwleGJ-iMMBCIB7AonGdxEFCaGJMq1qqig60N8-xHVRpNCPpqPin-Bu5S5xVA7G3PfAa20kc_3wf8d39AJ4pmxsbDSR3tj_gUvqUG5t5rhwaI9KQ0mxWepxOJurwMJtuwK8uF4bCKjuZ2AhqV1r6R_5aUKEsVJZZ9u7kOyfWKDpd7Sg0WliM_M8Vumz12-Euru9zIfY-HLzf54FVgFu0BZZcFnFhySx3qcxd34u0IBugEJFNnJS5oeqahUFPIi6Es7EylI-ZKSNc6pOMCh2gyL8iByqlfTVK-ZnkR_elpa5HlyxOsigk6bSpepFoTkwpECLB9tU5RfinOvjrXLZRd3tb_9uHugk3gmHNdtqdcAs2_OI2bAUjmwURVuOljseiu3YHpm0aD0P5VjZhuWzXB-aMN2xqKqKbOWYzHOPLdRObtBH07MvcsJn_hhCdWzat5mV1Fz5fylTvweaiXPj7wJI0Q6dU5V65vjSxy3PjosQRN5P1yvgeRN2yaxvKsBMbyLFeF5AmqGiEim6golc9eHk25qQtQnJh76eEJk3VPRYUPvTVnNa1Hs4-6Z2U6BNEEkc9eBE6FSU-3pqQjYGToIJg53pudzjTQb7Veg2yHrzqkLpu_vfLPbj4bk_g2v7Bx7EeDyejh3BdNPuFYqO3YXNZnfpHcNX-WM7r6nGz8xgcXTaCfwOYwmP3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ8QNIQXEZV4irIxGh6w4bpsv0wIIR4XL5BLw6EhvKzb3a25BK_YHl781_zrnGm3XMDAGw-87m7b3fa389GdmR_A-1hnSvs7wjO6u-MJYSNP6cR6sUFjRChSmvWXPoqGw_j0NEkX4G-bC0Nhla1MrAW1KTT9I9_mVCgLlWWSbOcuLCLt9fcufnnEIEUnrS2dRgORQ_tnhu5btTvo4bf-wHn_4OTzF88xDHga7YKpJ_Ig12Sim0hkpmt5lJM9kHNfh0aITFGlzVyhVxHk3OggVpSbmcSKm8iGCRU9QPH_KMJpUThhGpxdaQF0ZRoae3TPgjDxXcJOk7bn8_r0lIIiQuyfXVOKN1XDf2e0terrrzzkl_YUnjiDm-03O2QVFuzkGaw445s50VZhU8tv0bY9h7RJ72Eo94o6XJf1rGPU-MRSVRINzTkb4TW2mHexYRNZz76NFRvZnwjdsWZpOS7KF_D1Xpa6BouTYmJfAgujBJ3VOLOx6QoVmCxTxg8NcTZpGyvbAb-FgNSuPDuxhJzLeWFpgo1E2MgaNnLWga2ray6a4iR3jn5HyJJU9WNCUPihLqtKDkbHcj8iWgUeBn4HNt2gvMDHa-WyNHARVCjs2sj1FnPSyb1KzgHXgY8taufdt0_u1d1324AlBK48GgwPX8Myr7cOhUyvw-K0vLRv4LH-PR1X5dt6EzL4ft8A_gfbaG0b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Monocular+Deraining%3A+Parallel+Stereo+Deraining+Network+Via+Semantic+Prior&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhang%2C+Kaihao&rft.au=Luo%2C+Wenhan&rft.au=Yu%2C+Yanjiang&rft.au=Ren%2C+Wenqi&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=7&rft.spage=1754&rft.epage=1769&rft_id=info:doi/10.1007%2Fs11263-022-01620-w&rft.externalDocID=10_1007_s11263_022_01620_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon