The space of convex domains in complex Euclidean space

In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 30; číslo 2; s. 1312 - 1358
Hlavní autoři: Gaussier, Hervé, Zimmer, Andrew
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2020
Springer Nature B.V
Springer
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all continuous on the space of convex domains. The group of affine automorphisms acts on this space and we also describe the orbit closures for some special classes of domains.
AbstractList In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all continuous on the space of convex domains. The group of affine automorphisms acts on this space and we also describe the orbit closures for some special classes of domains.
Author Gaussier, Hervé
Zimmer, Andrew
Author_xml – sequence: 1
  givenname: Hervé
  surname: Gaussier
  fullname: Gaussier, Hervé
  email: herve.gaussier@univ-grenoble-alpes.fr
  organization: Univ. Grenoble Alpes, CNRS, IF
– sequence: 2
  givenname: Andrew
  surname: Zimmer
  fullname: Zimmer, Andrew
  organization: Department of Mathematics, Louisiana State University
BackLink https://hal.science/hal-04756533$$DView record in HAL
BookMark eNp9kE9LwzAYh4NMcJt-AU8FTx6qb_42PY4xnTDwMsFbyNLUZXRJbbqh397WioKHnZL8eJ43L78JGvngLULXGO4wQHYfMSEEUsB5CkCZSPkZGmPO-yd5HXV34JCKnIgLNIlxB8AEZdkYifXWJrHWxiahTEzwR_uRFGGvnY-J812yr6suWhxM5Qqr_QBfovNSV9Fe_ZxT9PKwWM-X6er58Wk-W6WG5qRNCeY4h43OZUGF4NLmGwkUmDS6FFYWJdOEEWCllJhoiUswDAxkZS4zyrmhU3Q7zN3qStWN2-vmUwXt1HK2Un0GLOOCU3rEHXszsHUT3g82tmoXDo3v1lOESiYFxqSnyECZJsTY2PJ3LAbVd6mGLlXXpfruUvFOkv8k41rduuDbRrvqtEoHNXb_-Dfb_G11wvoC7YWHDg
CitedBy_id crossref_primary_10_1515_crelle_2025_0041
crossref_primary_10_1016_j_aim_2022_108334
crossref_primary_10_1007_s00209_021_02858_9
crossref_primary_10_1007_s12044_025_00828_3
Cites_doi 10.1006/jfan.1998.3317
10.1002/cpa.3160330404
10.1090/tran/6403
10.1016/0022-1236(92)90029-I
10.1090/pspum/039.1/720056
10.1090/pspum/052.1/1128522
10.1016/j.aim.2009.01.002
10.1215/S0012-7094-76-04367-2
10.2140/pjm.2016.282.341
10.1515/FORUM.2009.039
10.1007/s00208-017-1546-y
10.1007/BF02392734
10.1007/BF02201775
10.1090/conm/101/1034986
10.2140/pjm.1996.176.141
10.1515/9783110253863
10.1090/pspum/052.2/1128543
10.1007/b97238
10.1307/mmj/1029005712
10.1007/s12220-013-9410-0
10.1090/S0002-9939-1980-0572300-3
10.4310/jdg/1116508767
10.5802/aif.768
10.1007/978-0-8176-4622-6
10.1006/aima.1998.1821
10.4310/jdg/1121540343
10.1007/978-3-319-65837-7
10.1007/BF02921382
10.1006/aima.1994.1082
10.1090/pspum/052.2/1128547
10.1007/s00208-015-1278-9
10.1142/S0129167X17500318
10.1007/BF01403050
ContentType Journal Article
Copyright Mathematica Josephina, Inc. 2020
2020© Mathematica Josephina, Inc. 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Mathematica Josephina, Inc. 2020
– notice: 2020© Mathematica Josephina, Inc. 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s12220-019-00346-5
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1559-002X
EndPage 1358
ExternalDocumentID oai:HAL:hal-04756533v1
10_1007_s12220_019_00346_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
1XC
ID FETCH-LOGICAL-c392t-215190ba98d36658e9b803048caf6e8df4a24204f8812a81f0c40c07f987355c3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516037000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-6926
IngestDate Tue Oct 14 20:57:35 EDT 2025
Thu Sep 25 00:45:41 EDT 2025
Sat Nov 29 04:58:16 EST 2025
Tue Nov 18 22:23:12 EST 2025
Fri Feb 21 02:37:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Invariant metrics and pseudodistances
Convex domains
32F17
Primary 32F45
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-215190ba98d36658e9b803048caf6e8df4a24204f8812a81f0c40c07f987355c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2384861121
PQPubID 2043891
PageCount 47
ParticipantIDs hal_primary_oai_HAL_hal_04756533v1
proquest_journals_2384861121
crossref_primary_10_1007_s12220_019_00346_5
crossref_citationtrail_10_1007_s12220_019_00346_5
springer_journals_10_1007_s12220_019_00346_5
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of geometric analysis
PublicationTitleAbbrev J Geom Anal
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry. Mediterranean Press, Rende (1989)
Pinchuk, S.: The scaling method and holomorphic mappings. In: Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 151–161. American Mathematical Society, Providence (1991)
FuSStraubeEJCompactness of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\partial }}$$\end{document}-Neumann problem on convex domainsJ. Funct. Anal.19981592629641
HörmanderLAn Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library19903AmsterdamNorth-Holland Publishing Co.
NikolovNAndreevLBoundary behavior of the squeezing functions of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}-convex domains and plane domainsInt. J. Math.20172851750031,5
KimK-TZhangLOn the uniform squeezing property of bounded convex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C}^n$$\end{document}Pacific J. Math.20162822341358
GreeneREKimK-TKrantzSGThe Geometry of Complex Domains. Progress in Mathematics2011BostonBirkhäuser Boston Inc.
BarthTJConvex domains and Kobayashi hyperbolicityProc. Am. Math. Soc.1980794556558
DiederichKFornæssJEWoldEFExposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-typeJ. Geom. Anal.201424421242134
Graham, I.: Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 233–238. American Mathematical Society, Providence (1991)
LiuKSunXYauS-TCanonical metrics on the moduli space of Riemann surfaces. IIJ. Differ. Geom.2005691163216
LiuKSunXYauS-TCanonical metrics on the moduli space of Riemann surfaces. IJ. Differ. Geom.2004683571637
RosayJ-PSur une caractérisation de la boule parmi les domaines de Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^n$$\end{document} par son groupe d’automorphismesAnn. Inst. Fourier19792949197
WongBCharacterization of the unit ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^n$$\end{document} by its automorphism groupInvent. Math.197741253257
Mok, N., Yau, S.-T.: Completeness of the Kähler–Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. The mathematical heritage of Henri Poincare, Proceedings of Symposium Pure Mathematics 39, Part 1, Bloomington/Indiana 1980, pp. 41–59 (1983)
Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 183–208. American Mathematical Society, Providence (1991)
KimK-TJiyeYuBoundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domainsPacific J. Math.19961761141163
FornæssJERongFEstimate of the squeezing function for a class of bounded domainsMath. Ann.20183713–410871094
AxlerSBourdonPRameyWHarmonic Function Theory. Graduate Texts in Mathematics1992New YorkSpringer
BedfordEPinchukSIConvex domains with noncompact groups of automorphismsMat. Sb.19941855326
FrankelSComplex geometry of convex domains that cover varietiesActa Math.19891631–2109149
BracciFSaraccoAHyperbolicity in unbounded convex domainsForum Math.2009215815825
IsaevAVKrantzSGDomains with non-compact automorphism group: a surveyAdv. Math.19991461138
McNealJDEstimates on the Bergman kernels of convex domainsAdv. Math.19941091108139
Bracci, F., Gaussier, H., Zimmer, A.: The geometry of domains with negatively pinched Kähler metrics. arXiv:1810.11389 (2018)
LempertLHolomorphic retracts and intrinsic metrics in convex domainsAnal. Math.19828257261
Blanc-CentiLMetrical and Dynamical Aspects in Complex Analysis. Lecture Notes in Mathematics2017BerlinSpringer International Publishing
RamadanovISur une propriété de la fonction de BergmanC. R. Acad. Bulg. Sci.196720759762
YeungS-KGeometry of domains with the uniform squeezing propertyAdv. Math.20092212547569
Jarnicki, M., Pflug, P.: Invariant distances and metrics in complex analysis, vol. 9, 2nd extended edn. Walter de Gruyter, Berlin (2013)
Frankel, S.: Affine approach to complex geometry. In: Recent Developments in Geometry (Los Angeles, CA, 1987), Contemporary Mathematics, vol. 101, pp. 263–286. American Mathematical Society, Providence (1989)
YangPCOn Kähler manifolds with negative holomorphic bisectional curvatureDuke Math. J.197643871874
ZimmerAMGromov hyperbolicity and the Kobayashi metric on convex domains of finite typeMath. Ann.20163653–414251498
ChengS-YYauS-TOn the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equationCommun. Pure Appl. Math.198033507544
McNealJDConvex domains of finite typeJ. Funct. Anal.19921082361373
DengFGuanQZhangLProperties of squeezing functions and global transformations of bounded domainsTrans. Am. Math. Soc.2016368426792696
GaussierHCharacterization of convex domains with noncompact automorphism groupMichigan Math. J.1997442375388
Kim, K.-T.: Geometry of bounded domains and the scaling techniques in several complex variables. Lecture Notes Series, vol. 13. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1993)
Wu, D., Yau, S.-T.: Invariant metrics on negatively pinched complete Kähler manifolds. ArXiv e-prints(2017)
BoasHPStraubeEJOn equality of line type and variety type of real hypersurfaces in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ C}^n$$\end{document}J. Geom. Anal.1992229598
346_CR18
K-T Kim (346_CR24) 1996; 176
JE Fornæss (346_CR12) 2018; 371
RE Greene (346_CR19) 2011
PC Yang (346_CR38) 1976; 43
K-T Kim (346_CR25) 2016; 282
I Ramadanov (346_CR34) 1967; 20
B Wong (346_CR36) 1977; 41
K Diederich (346_CR10) 2014; 24
346_CR22
JD McNeal (346_CR30) 1994; 109
346_CR23
AM Zimmer (346_CR40) 2016; 365
S Frankel (346_CR14) 1989; 163
S-K Yeung (346_CR39) 2009; 221
K Liu (346_CR28) 2005; 69
346_CR5
346_CR1
HP Boas (346_CR7) 1992; 2
F Bracci (346_CR8) 2009; 21
L Hörmander (346_CR20) 1990
L Blanc-Centi (346_CR4) 2017
K Liu (346_CR27) 2004; 68
F Deng (346_CR11) 2016; 368
L Lempert (346_CR26) 1982; 8
JD McNeal (346_CR29) 1992; 108
AV Isaev (346_CR21) 1999; 146
E Bedford (346_CR6) 1994; 185
N Nikolov (346_CR32) 2017; 28
J-P Rosay (346_CR35) 1979; 29
TJ Barth (346_CR3) 1980; 79
346_CR31
S-Y Cheng (346_CR9) 1980; 33
H Gaussier (346_CR17) 1997; 44
346_CR33
346_CR13
S Fu (346_CR16) 1998; 159
S Axler (346_CR2) 1992
346_CR15
346_CR37
References_xml – reference: BarthTJConvex domains and Kobayashi hyperbolicityProc. Am. Math. Soc.1980794556558
– reference: LiuKSunXYauS-TCanonical metrics on the moduli space of Riemann surfaces. IJ. Differ. Geom.2004683571637
– reference: ZimmerAMGromov hyperbolicity and the Kobayashi metric on convex domains of finite typeMath. Ann.20163653–414251498
– reference: Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry. Mediterranean Press, Rende (1989)
– reference: ChengS-YYauS-TOn the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equationCommun. Pure Appl. Math.198033507544
– reference: LiuKSunXYauS-TCanonical metrics on the moduli space of Riemann surfaces. IIJ. Differ. Geom.2005691163216
– reference: Bracci, F., Gaussier, H., Zimmer, A.: The geometry of domains with negatively pinched Kähler metrics. arXiv:1810.11389 (2018)
– reference: WongBCharacterization of the unit ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^n$$\end{document} by its automorphism groupInvent. Math.197741253257
– reference: BedfordEPinchukSIConvex domains with noncompact groups of automorphismsMat. Sb.19941855326
– reference: Wu, D., Yau, S.-T.: Invariant metrics on negatively pinched complete Kähler manifolds. ArXiv e-prints(2017)
– reference: FrankelSComplex geometry of convex domains that cover varietiesActa Math.19891631–2109149
– reference: BracciFSaraccoAHyperbolicity in unbounded convex domainsForum Math.2009215815825
– reference: BoasHPStraubeEJOn equality of line type and variety type of real hypersurfaces in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ C}^n$$\end{document}J. Geom. Anal.1992229598
– reference: DengFGuanQZhangLProperties of squeezing functions and global transformations of bounded domainsTrans. Am. Math. Soc.2016368426792696
– reference: NikolovNAndreevLBoundary behavior of the squeezing functions of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}-convex domains and plane domainsInt. J. Math.20172851750031,5
– reference: Kim, K.-T.: Geometry of bounded domains and the scaling techniques in several complex variables. Lecture Notes Series, vol. 13. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1993)
– reference: Blanc-CentiLMetrical and Dynamical Aspects in Complex Analysis. Lecture Notes in Mathematics2017BerlinSpringer International Publishing
– reference: YeungS-KGeometry of domains with the uniform squeezing propertyAdv. Math.20092212547569
– reference: GaussierHCharacterization of convex domains with noncompact automorphism groupMichigan Math. J.1997442375388
– reference: RamadanovISur une propriété de la fonction de BergmanC. R. Acad. Bulg. Sci.196720759762
– reference: Jarnicki, M., Pflug, P.: Invariant distances and metrics in complex analysis, vol. 9, 2nd extended edn. Walter de Gruyter, Berlin (2013)
– reference: AxlerSBourdonPRameyWHarmonic Function Theory. Graduate Texts in Mathematics1992New YorkSpringer
– reference: Pinchuk, S.: The scaling method and holomorphic mappings. In: Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 151–161. American Mathematical Society, Providence (1991)
– reference: GreeneREKimK-TKrantzSGThe Geometry of Complex Domains. Progress in Mathematics2011BostonBirkhäuser Boston Inc.
– reference: KimK-TJiyeYuBoundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domainsPacific J. Math.19961761141163
– reference: FuSStraubeEJCompactness of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\partial }}$$\end{document}-Neumann problem on convex domainsJ. Funct. Anal.19981592629641
– reference: DiederichKFornæssJEWoldEFExposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-typeJ. Geom. Anal.201424421242134
– reference: RosayJ-PSur une caractérisation de la boule parmi les domaines de Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^n$$\end{document} par son groupe d’automorphismesAnn. Inst. Fourier19792949197
– reference: Mok, N., Yau, S.-T.: Completeness of the Kähler–Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. The mathematical heritage of Henri Poincare, Proceedings of Symposium Pure Mathematics 39, Part 1, Bloomington/Indiana 1980, pp. 41–59 (1983)
– reference: HörmanderLAn Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library19903AmsterdamNorth-Holland Publishing Co.
– reference: Frankel, S.: Affine approach to complex geometry. In: Recent Developments in Geometry (Los Angeles, CA, 1987), Contemporary Mathematics, vol. 101, pp. 263–286. American Mathematical Society, Providence (1989)
– reference: IsaevAVKrantzSGDomains with non-compact automorphism group: a surveyAdv. Math.19991461138
– reference: McNealJDEstimates on the Bergman kernels of convex domainsAdv. Math.19941091108139
– reference: FornæssJERongFEstimate of the squeezing function for a class of bounded domainsMath. Ann.20183713–410871094
– reference: Graham, I.: Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 233–238. American Mathematical Society, Providence (1991)
– reference: Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 183–208. American Mathematical Society, Providence (1991)
– reference: KimK-TZhangLOn the uniform squeezing property of bounded convex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C}^n$$\end{document}Pacific J. Math.20162822341358
– reference: YangPCOn Kähler manifolds with negative holomorphic bisectional curvatureDuke Math. J.197643871874
– reference: McNealJDConvex domains of finite typeJ. Funct. Anal.19921082361373
– reference: LempertLHolomorphic retracts and intrinsic metrics in convex domainsAnal. Math.19828257261
– volume: 159
  start-page: 629
  issue: 2
  year: 1998
  ident: 346_CR16
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1998.3317
– volume: 33
  start-page: 507
  year: 1980
  ident: 346_CR9
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160330404
– volume: 368
  start-page: 2679
  issue: 4
  year: 2016
  ident: 346_CR11
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6403
– volume: 20
  start-page: 759
  year: 1967
  ident: 346_CR34
  publication-title: C. R. Acad. Bulg. Sci.
– volume: 108
  start-page: 361
  issue: 2
  year: 1992
  ident: 346_CR29
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(92)90029-I
– ident: 346_CR31
  doi: 10.1090/pspum/039.1/720056
– volume: 185
  start-page: 3
  issue: 5
  year: 1994
  ident: 346_CR6
  publication-title: Mat. Sb.
– ident: 346_CR33
  doi: 10.1090/pspum/052.1/1128522
– volume: 221
  start-page: 547
  issue: 2
  year: 2009
  ident: 346_CR39
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2009.01.002
– volume: 43
  start-page: 871
  year: 1976
  ident: 346_CR38
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-76-04367-2
– volume-title: An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library
  year: 1990
  ident: 346_CR20
– volume: 282
  start-page: 341
  issue: 2
  year: 2016
  ident: 346_CR25
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2016.282.341
– volume: 21
  start-page: 815
  issue: 5
  year: 2009
  ident: 346_CR8
  publication-title: Forum Math.
  doi: 10.1515/FORUM.2009.039
– volume: 371
  start-page: 1087
  issue: 3–4
  year: 2018
  ident: 346_CR12
  publication-title: Math. Ann.
  doi: 10.1007/s00208-017-1546-y
– ident: 346_CR1
– volume: 163
  start-page: 109
  issue: 1–2
  year: 1989
  ident: 346_CR14
  publication-title: Acta Math.
  doi: 10.1007/BF02392734
– volume: 8
  start-page: 257
  year: 1982
  ident: 346_CR26
  publication-title: Anal. Math.
  doi: 10.1007/BF02201775
– ident: 346_CR5
– ident: 346_CR13
  doi: 10.1090/conm/101/1034986
– volume: 176
  start-page: 141
  issue: 1
  year: 1996
  ident: 346_CR24
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1996.176.141
– ident: 346_CR22
  doi: 10.1515/9783110253863
– ident: 346_CR15
  doi: 10.1090/pspum/052.2/1128543
– volume-title: Harmonic Function Theory. Graduate Texts in Mathematics
  year: 1992
  ident: 346_CR2
  doi: 10.1007/b97238
– volume: 44
  start-page: 375
  issue: 2
  year: 1997
  ident: 346_CR17
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1029005712
– volume: 24
  start-page: 2124
  issue: 4
  year: 2014
  ident: 346_CR10
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-013-9410-0
– volume: 79
  start-page: 556
  issue: 4
  year: 1980
  ident: 346_CR3
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1980-0572300-3
– volume: 68
  start-page: 571
  issue: 3
  year: 2004
  ident: 346_CR27
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1116508767
– volume: 29
  start-page: 91
  issue: 4
  year: 1979
  ident: 346_CR35
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.768
– volume-title: The Geometry of Complex Domains. Progress in Mathematics
  year: 2011
  ident: 346_CR19
  doi: 10.1007/978-0-8176-4622-6
– ident: 346_CR37
– volume: 146
  start-page: 1
  issue: 1
  year: 1999
  ident: 346_CR21
  publication-title: Adv. Math.
  doi: 10.1006/aima.1998.1821
– volume: 69
  start-page: 163
  issue: 1
  year: 2005
  ident: 346_CR28
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1121540343
– volume-title: Metrical and Dynamical Aspects in Complex Analysis. Lecture Notes in Mathematics
  year: 2017
  ident: 346_CR4
  doi: 10.1007/978-3-319-65837-7
– volume: 2
  start-page: 95
  issue: 2
  year: 1992
  ident: 346_CR7
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921382
– volume: 109
  start-page: 108
  issue: 1
  year: 1994
  ident: 346_CR30
  publication-title: Adv. Math.
  doi: 10.1006/aima.1994.1082
– ident: 346_CR18
  doi: 10.1090/pspum/052.2/1128547
– volume: 365
  start-page: 1425
  issue: 3–4
  year: 2016
  ident: 346_CR40
  publication-title: Math. Ann.
  doi: 10.1007/s00208-015-1278-9
– ident: 346_CR23
– volume: 28
  start-page: 1750031,5
  issue: 5
  year: 2017
  ident: 346_CR32
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X17500318
– volume: 41
  start-page: 253
  year: 1977
  ident: 346_CR36
  publication-title: Invent. Math.
  doi: 10.1007/BF01403050
SSID ssj0046347
Score 2.203086
Snippet In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1312
SubjectTerms Abstract Harmonic Analysis
an Important Tool in Several Complex Variables
Automorphisms
Closures
Convex and Discrete Geometry
Differential Geometry
Domains
Dynamical Systems and Ergodic Theory
Euclidean geometry
Euclidean space
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Invariant Metrics
Mathematics
Mathematics and Statistics
Topology
Title The space of convex domains in complex Euclidean space
URI https://link.springer.com/article/10.1007/s12220-019-00346-5
https://www.proquest.com/docview/2384861121
https://hal.science/hal-04756533
Volume 30
WOSCitedRecordID wos000516037000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5s9aAHH1WxvgjiTRey3SSbHItYPFQRfNDbkmazWNCtdNviz3eS7rYqKug1mX0wmcl8Q2a-AJzyyDAVSoGOxGnAUs4CHbXQr4ShxtEdxdZT5nfjmxvZ66nbsimsqKrdqyNJv1Mvmt0wlLkiKhU4UhUR8Bosc8c243L0u8dq_2Ui8teKIXDAxEi1RNkq8_07PoWj2pMrhvyANL8cjvqY09n4399uwnqJMUl7ZhRbsGTzBmyUeJOU3lw0YO16ztlabINAiyG4vxhLhhnx1ehvJB2-6EFekEFOfPE5Dl1OzPMgtTqfCe_AQ-fy_uIqKG9VCAxioXHgYryifa1kGgnEH1b1pTsflUZnwso0YxrDNmWZxNivZZhRw6ihcaZkjODERLtQz4e53QNieKjDLAyNyThLNdU2tYLrVGHSiJlHqwlhpdzElJTj7uaL52RBluzUlKCaEq-mhDfhbP7M64xw41fpE1yzuaDjyr5qdxM3RlmMYDWKpmETDqslTUoPLRKEKkwKRJs4fV4t4WL650_u_038AFZbLkX3xT6HUB-PJvYIVsx0PChGx95y3wH4IOGO
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurB-sT6DOJNF7LdbDY5FrFUrEXwgbcQs1ks6FbcKv58J-luq6KCXpPZB5NM5htm8g3AQRwZJkPB0ZBiGrA0ZoGOmmhX3FDj6I4S6ynzu0mvJ25v5UV5Kayoqt2rlKQ_qSeX3dCVuSIqGThSFR7E0zDDXJsdF6Nf3lTnL-ORbyuGwAEDI9nk5VWZ79_xyR1N37tiyA9I80ty1Pucdv1_f7sEiyXGJK3RpliGKZuvQL3Em6S05mIFFs7HnK3FKnDcMQTPF2PJICO-Gv2NpINH3c8L0s-JLz7HoZMX89BPrc5Hwmtw3T65Ou4EZVeFwCAWGgbOx0t6p6VII474w8o74fKjwuiMW5FmTKPbpiwT6Pu1CDNqGDU0yaRIEJyYaB1q-SC3G0BMHOowC0NjspilmmqbWh7rVGLQiJFHswFhpVxlSspx1_niQU3Ikp2aFKpJeTWpuAGH42eeRoQbv0rv45qNBR1XdqfVVW6MsgTBahS9hg3YrpZUlRZaKIQqTHBEmzh9VC3hZPrnT27-TXwP5jpX513VPe2dbcF804XrvvBnG2rD5xe7A7Pmddgvnnf9Ln4Hkxrkcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5xVFX7AC2lajhaq-KtrOLNer32IwIiUEOEOCreLONDRIINYgPi5zN2dhOoAAnxas8eGns832hmPgNs5JlhMhUcDSmnCbM5S3TWQbvihppAd1S4SJnfK_p9cXYmDx918cdq9yYlOe5pCCxN5ah9bX172viGbi0UVMkkEKzwJJ-FeYaRTCjqOjr-15zFjGfxijEEERgkyQ6v22aef8cT1zR7EQojH6HO_xKl0f90F9__519gocaeZGu8Wb7CjCuXYLHGoaS28moJPh9MuFyrb8BxJxE8d4wjQ09ilfo9scMrPSgrMihJLErHod1bczmwTpdj4WU47e6ebO8l9W0LiUGMNEqC75f0XEthM464xMlzEfKmwmjPnbCeaXTnlHmBmECL1FPDqKGFl6JA0GKy7zBXDkv3A4jJU536NDXG58xqqp11PNdWYjCJEUmnBWmjaGVqKvJwI8almpIoBzUpVJOKalJ5C_5MnrkeE3G8Kv0b128iGDi097Z6KoxRViCIzbK7tAVrzfKq2nIrhRCGCY4oFKc3m-WcTr_8yZW3if-Cj4c7XdXb7_9dhU-dEMXHeqA1mBvd3Lp1-GDuRoPq5mfc0A_0ue1W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+space+of+convex+domains+in+complex+Euclidean+space&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Gaussier%2C+Herv%C3%A9&rft.au=Zimmer%2C+Andrew&rft.date=2020-04-01&rft.pub=Springer&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=30&rft.issue=2&rft.spage=1312&rft.epage=1358&rft_id=info:doi/10.1007%2Fs12220-019-00346-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04756533v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon