The space of convex domains in complex Euclidean space
In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all con...
Gespeichert in:
| Veröffentlicht in: | The Journal of geometric analysis Jg. 30; H. 2; S. 1312 - 1358 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2020
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 1050-6926, 1559-002X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all continuous on the space of convex domains. The group of affine automorphisms acts on this space and we also describe the orbit closures for some special classes of domains. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-019-00346-5 |