The space of convex domains in complex Euclidean space

In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 30; číslo 2; s. 1312 - 1358
Hlavní autoři: Gaussier, Hervé, Zimmer, Andrew
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2020
Springer Nature B.V
Springer
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this mostly expository article, we describe some properties of the space of convex domains in complex Euclidean space (endowed with the local Hausdorff topology). In particular, we give careful proofs that the Kobayashi metric, the Bergman kernel/metric, and the Kähler–Einstein metric are all continuous on the space of convex domains. The group of affine automorphisms acts on this space and we also describe the orbit closures for some special classes of domains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00346-5