Floating Gate Transistor‐Based Accurate Digital In‐Memory Computing for Deep Neural Networks

To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed to address the time‐consuming and energy‐hungry data shuttling issue. Herein, a digital in‐memory computing method for convolution computing,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced intelligent systems Ročník 4; číslo 12
Hlavní autori: Han, Runze, Huang, Peng, Xiang, Yachen, Hu, Hong, Lin, Sheng, Dong, Peiyan, Shen, Wensheng, Wang, Yanzhi, Liu, Xiaoyan, Kang, Jinfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.12.2022
Wiley
Predmet:
ISSN:2640-4567, 2640-4567
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed to address the time‐consuming and energy‐hungry data shuttling issue. Herein, a digital in‐memory computing method for convolution computing, which holds the key to DNNs, is proposed. Based on the proposed method, a floating gate transistor‐based in‐memory computing chip for accurate convolution computing with high parallelism is created. The proposed digital in‐memory computing method can achieve the central processing unit (CPU)‐equivalent precision with the same neural network architecture and parameters, different from the analogue or digital–analogue‐mixed in‐memory computing techniques. Based on the fabricated floating gate transistor‐based in‐memory computing chip, a hardware LeNet‐5 neural network is built. The chip achieves 96.25% accuracy on the full Modified National Institute of Standards and Technology database, which is the same as the result computed by the CPU with the same neural network architecture and parameters. To improve the computing speed and energy efficiency of the deep neural network (DNN) applications, a digital in‐memory computing method for convolution computing is proposed and a floating gate transistor‐based in‐memory computing chip for accurate convolution computing with high parallelism is created. The recognition accuracy of the hardware neural network system is same as the software.
AbstractList To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in-memory computing with nonvolatile memory (NVM) is proposed to address the time-consuming and energy-hungry data shuttling issue. Herein, a digital in-memory computing method for convolution computing, which holds the key to DNNs, is proposed. Based on the proposed method, a floating gate transistor-based in-memory computing chip for accurate convolution computing with high parallelism is created. The proposed digital in-memory computing method can achieve the central processing unit (CPU)-equivalent precision with the same neural network architecture and parameters, different from the analogue or digital–analogue-mixed in-memory computing techniques. Based on the fabricated floating gate transistor-based in-memory computing chip, a hardware LeNet-5 neural network is built. The chip achieves 96.25% accuracy on the full Modified National Institute of Standards and Technology database, which is the same as the result computed by the CPU with the same neural network architecture and parameters.
To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed to address the time‐consuming and energy‐hungry data shuttling issue. Herein, a digital in‐memory computing method for convolution computing, which holds the key to DNNs, is proposed. Based on the proposed method, a floating gate transistor‐based in‐memory computing chip for accurate convolution computing with high parallelism is created. The proposed digital in‐memory computing method can achieve the central processing unit (CPU)‐equivalent precision with the same neural network architecture and parameters, different from the analogue or digital–analogue‐mixed in‐memory computing techniques. Based on the fabricated floating gate transistor‐based in‐memory computing chip, a hardware LeNet‐5 neural network is built. The chip achieves 96.25% accuracy on the full Modified National Institute of Standards and Technology database, which is the same as the result computed by the CPU with the same neural network architecture and parameters. To improve the computing speed and energy efficiency of the deep neural network (DNN) applications, a digital in‐memory computing method for convolution computing is proposed and a floating gate transistor‐based in‐memory computing chip for accurate convolution computing with high parallelism is created. The recognition accuracy of the hardware neural network system is same as the software.
Author Kang, Jinfeng
Han, Runze
Lin, Sheng
Xiang, Yachen
Hu, Hong
Dong, Peiyan
Shen, Wensheng
Liu, Xiaoyan
Huang, Peng
Wang, Yanzhi
Author_xml – sequence: 1
  givenname: Runze
  orcidid: 0000-0002-7310-392X
  surname: Han
  fullname: Han, Runze
  organization: Peking University
– sequence: 2
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
  email: phwang@pku.edu.cn
  organization: Peking University
– sequence: 3
  givenname: Yachen
  surname: Xiang
  fullname: Xiang, Yachen
  organization: Peking University
– sequence: 4
  givenname: Hong
  surname: Hu
  fullname: Hu, Hong
  organization: GigaDevice Semiconductor, Inc
– sequence: 5
  givenname: Sheng
  surname: Lin
  fullname: Lin, Sheng
  organization: Northeastern University
– sequence: 6
  givenname: Peiyan
  surname: Dong
  fullname: Dong, Peiyan
  organization: Northeastern University
– sequence: 7
  givenname: Wensheng
  surname: Shen
  fullname: Shen, Wensheng
  organization: Peking University
– sequence: 8
  givenname: Yanzhi
  surname: Wang
  fullname: Wang, Yanzhi
  organization: Northeastern University
– sequence: 9
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
  organization: Peking University
– sequence: 10
  givenname: Jinfeng
  surname: Kang
  fullname: Kang, Jinfeng
  email: kangjf@pku.edu.cn
  organization: Peking University
BookMark eNqFkctuEzEUhi1UpF7otuuRWCf1dWwvQ3ohUlsWlAUr92TmTOQwGQfbUZVdH4Fn5ElwmqogJMTqWD7_959j_8fkYAgDEnLG6JhRys_Bp-2YU84pZVy_IUe8lnQkVa0P_jgfktOUlrQATDPK9RF5uOoDZD8sqmvIWN1HGJJPOcSfTz8-QMK2mjTNJu56F37hM_TVbCi9W1yFuK2mYbXePONdiNUF4rq6wyLvS8mPIX5L78jbDvqEpy_1hHy5uryffhzdfLqeTSc3o0ZYrkeq7rSgxnArrVFSai2QWgsGGUdTz0UrrdCsa40ybc0b0LZWXVeeIRvN5lKckNnetw2wdOvoVxC3LoB3zxchLhzE7JseHQoFNbQKUFgpWGfaOWgGgs6pVi2Y4vV-77WO4fsGU3bLsIlDWd9xreqyApWiqMZ7VRNDShG716mMul0obheKew2lAPIvoCkfmn0YcgTf_xuze-zR97j9zxA3mX3--pv9BRFgo-4
CitedBy_id crossref_primary_10_1039_D4RA08307E
Cites_doi 10.3389/fnins.2014.00205
10.1038/nature16961
10.1038/s41928-019-0221-6
10.1109/CICC.2018.8357072
10.1109/JPROC.2003.811702
10.1038/s41928-018-0054-8
10.1038/530144a
10.1109/TED.2015.2439635
10.1002/aisy.202000085
10.1063/1.5116270
10.1145/2996864
10.1002/admt.202100745
10.1002/adma.201705914
10.1109/TED.2016.2568762
10.1002/aisy.202200028
10.1038/s41928-018-0023-2
10.1109/T-C.1969.222754
10.1002/aisy.202100199
10.1109/TBCAS.2015.2414423
10.1038/nature14441
10.12968/opti.2016.5.127
10.1109/JSSC.2016.2616357
10.1109/MSP.2012.2205597
10.1038/nnano.2017.83
10.3390/mi13020319
10.1038/s41928-017-0002-z
10.1145/3297858.3304076
10.1038/s41928-018-0092-2
10.1109/5.726791
10.1109/JSSC.2011.2162186
10.1021/acs.nanolett.7b00552
10.1038/s41586-020-1942-4
10.1109/CVPR.2015.7298594
10.3389/fnins.2016.00056
10.1038/s41467-016-0009-6
10.1038/nature14539
10.1038/nature24270
10.1109/LED.2016.2573140
10.1038/s41928-018-0059-3
10.1002/admt.201800720
ContentType Journal Article
Copyright 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/aisy.202200127
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Download PDF from ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e35a6ad5ae39431f8dba71a30b075da8
10_1002_aisy_202200127
AISY202200127
Genre article
GrantInformation_xml – fundername: 111 project
  funderid: B18001
– fundername: National Nature Science Foundation of China
  funderid: 61841404; 61421005
– fundername: National Key Research and Development
  funderid: 2019YFB2205100; 2018YFA0701501
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ITC
M~E
OK1
PIMPY
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3927-56f7308829498544773e099a8e12e86b3d49371fd858d62ca7965ff1714c71b43
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000879920500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2640-4567
IngestDate Mon Nov 10 04:33:50 EST 2025
Sun Jul 13 04:48:15 EDT 2025
Sat Nov 29 07:22:33 EST 2025
Tue Nov 18 21:16:40 EST 2025
Wed Jan 22 16:20:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3927-56f7308829498544773e099a8e12e86b3d49371fd858d62ca7965ff1714c71b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7310-392X
OpenAccessLink https://www.proquest.com/docview/2756858043?pq-origsite=%requestingapplication%
PQID 2756858043
PQPubID 5064933
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_e35a6ad5ae39431f8dba71a30b075da8
proquest_journals_2756858043
crossref_primary_10_1002_aisy_202200127
crossref_citationtrail_10_1002_aisy_202200127
wiley_primary_10_1002_aisy_202200127_AISY202200127
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced intelligent systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 8
2021; 6
2019; 4
2015; 521
2019; 2
2016; 529
2016; 10
2011; 12
2017; 550
2015; 9
2016; 59
2016; 37
1998; 86
2017; 52
2020; 2
2003; 91
2022
2018; 1
2017; 17
2015; 62
2019; 66
2017; 12
2019; 115
2016; 530
2019
2022; 13
2020; 577
2016; 63
2017
2012; 29
2016
2018; 30
2011; 46
2015
2012; 25
2014; 8
1969; C-18
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Guo X. (e_1_2_11_32_1) 2017
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_12_1
e_1_2_11_33_1
Kim S. (e_1_2_11_30_1) 2015
Krizhevsky A. (e_1_2_11_3_1) 2012; 25
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_49_1
Kim M. (e_1_2_11_35_1) 2019
Collobert R. (e_1_2_11_7_1) 2011; 12
e_1_2_11_21_1
e_1_2_11_44_1
Lue H. T. (e_1_2_11_34_1) 2019
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Han R. (e_1_2_11_41_1) 2019; 66
References_xml – volume: 550
  start-page: 354
  year: 2017
  publication-title: Nature
– volume: 91
  start-page: 489
  year: 2003
  publication-title: Proc. IEEE
– start-page: 1
  year: 2017
– volume: 12
  start-page: 2493
  year: 2011
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 105
  year: 2016
  publication-title: Commun. ACM
– volume: 530
  start-page: 144
  year: 2016
  publication-title: Nature
– volume: 63
  start-page: 2963
  year: 2016
  publication-title: IEEE Trans. Electron Devices
– volume: C-18
  start-page: 719
  year: 1969
  publication-title: IEEE Trans. Comput.
– volume: 529
  start-page: 484
  year: 2016
  publication-title: Nature
– start-page: 17
  year: 2015
  publication-title: IEDM Tech. Dig.
– volume: 13
  start-page: 319
  year: 2022
  publication-title: Micromachines
– volume: 577
  start-page: 641
  year: 2020
  publication-title: Nature
– volume: 25
  start-page: 1097
  year: 2012
  publication-title: Adv. Neural Inf. Proc. Syst.
– start-page: 1
  year: 2015
– volume: 2
  start-page: 115
  year: 2019
  publication-title: Nat. Electron.
– start-page: 2200028
  year: 2022
  publication-title: Adv. Intell. Syst.
– start-page: 4960
  year: 2016
– volume: 1
  start-page: 137
  year: 2018
  publication-title: Nat. Electron.
– year: 2016
– volume: 521
  start-page: 436
  year: 2015
  publication-title: Nature
– volume: 1
  start-page: 246
  year: 2018
  publication-title: Nat. Electron.
– volume: 115
  start-page: 173501
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 1
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 56
  year: 2016
  publication-title: Front. Neurosci.
– volume: 86
  start-page: 2279
  year: 1998
  publication-title: Proc. IEEE
– volume: 17
  start-page: 3113
  year: 2017
  publication-title: Nano Lett.
– volume: 12
  start-page: 784
  year: 2017
  publication-title: Nat. Nanotech.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 29
  start-page: 82
  year: 2012
  publication-title: IEEE Signal Process Mag.
– volume: 30
  start-page: 1705914
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2100745
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 8
  start-page: 205
  year: 2014
  publication-title: Front. Neurosci.
– volume: 62
  start-page: 3498
  year: 2015
  publication-title: IEEE Trans. Electron Devices
– start-page: 151
  year: 2017
  publication-title: IEDM Tech. Dig.
– volume: 4
  start-page: 5
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 52
  start-page: 127
  year: 2017
  publication-title: IEEE J. Solid-State Circuits
– volume: 9
  start-page: 166
  year: 2015
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 521
  start-page: 61
  year: 2015
  publication-title: Nature
– volume: 66
  start-page: 5
  year: 2019
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– start-page: 923
  year: 2019
  publication-title: IEDM Tech. Dig.
– start-page: 925
  year: 2019
– volume: 37
  start-page: 870
  year: 2016
  publication-title: IEEE Electron Device Lett.
– volume: 1
  start-page: 216
  year: 2018
  publication-title: Nat. Electron.
– volume: 46
  start-page: 2312
  year: 2011
  publication-title: IEEE J. Solid-State Circuits
– volume: 1
  start-page: 52
  year: 2018
  publication-title: Nat. Electron.
– start-page: 915
  year: 2019
  publication-title: IEDM Tech. Dig.
– start-page: 2100199
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 2
  start-page: 2000085
  year: 2020
  publication-title: Adv. Intell. Syst.
– start-page: 923
  year: 2019
  ident: e_1_2_11_35_1
  publication-title: IEDM Tech. Dig.
– ident: e_1_2_11_28_1
  doi: 10.3389/fnins.2014.00205
– ident: e_1_2_11_8_1
  doi: 10.1038/nature16961
– ident: e_1_2_11_25_1
  doi: 10.1038/s41928-019-0221-6
– ident: e_1_2_11_46_1
  doi: 10.1109/CICC.2018.8357072
– ident: e_1_2_11_45_1
  doi: 10.1109/JPROC.2003.811702
– ident: e_1_2_11_17_1
  doi: 10.1038/s41928-018-0054-8
– ident: e_1_2_11_15_1
  doi: 10.1038/530144a
– ident: e_1_2_11_29_1
  doi: 10.1109/TED.2015.2439635
– ident: e_1_2_11_26_1
  doi: 10.1002/aisy.202000085
– ident: e_1_2_11_44_1
  doi: 10.1063/1.5116270
– ident: e_1_2_11_11_1
  doi: 10.1145/2996864
– ident: e_1_2_11_27_1
  doi: 10.1002/admt.202100745
– ident: e_1_2_11_23_1
  doi: 10.1002/adma.201705914
– volume: 66
  start-page: 5
  year: 2019
  ident: e_1_2_11_41_1
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– ident: e_1_2_11_37_1
  doi: 10.1109/TED.2016.2568762
– ident: e_1_2_11_6_1
– ident: e_1_2_11_38_1
  doi: 10.1002/aisy.202200028
– volume: 25
  start-page: 1097
  year: 2012
  ident: e_1_2_11_3_1
  publication-title: Adv. Neural Inf. Proc. Syst.
– start-page: 915
  year: 2019
  ident: e_1_2_11_34_1
  publication-title: IEDM Tech. Dig.
– ident: e_1_2_11_24_1
  doi: 10.1038/s41928-018-0023-2
– ident: e_1_2_11_16_1
  doi: 10.1109/T-C.1969.222754
– ident: e_1_2_11_43_1
  doi: 10.1002/aisy.202100199
– ident: e_1_2_11_36_1
  doi: 10.1109/TBCAS.2015.2414423
– ident: e_1_2_11_18_1
  doi: 10.1038/nature14441
– ident: e_1_2_11_13_1
  doi: 10.12968/opti.2016.5.127
– ident: e_1_2_11_14_1
  doi: 10.1109/JSSC.2016.2616357
– ident: e_1_2_11_5_1
  doi: 10.1109/MSP.2012.2205597
– ident: e_1_2_11_20_1
  doi: 10.1038/nnano.2017.83
– ident: e_1_2_11_39_1
  doi: 10.3390/mi13020319
– ident: e_1_2_11_22_1
  doi: 10.1038/s41928-017-0002-z
– volume: 12
  start-page: 2493
  year: 2011
  ident: e_1_2_11_7_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_11_47_1
  doi: 10.1145/3297858.3304076
– ident: e_1_2_11_42_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_11_49_1
  doi: 10.1109/5.726791
– start-page: 17
  year: 2015
  ident: e_1_2_11_30_1
  publication-title: IEDM Tech. Dig.
– start-page: 151
  year: 2017
  ident: e_1_2_11_32_1
  publication-title: IEDM Tech. Dig.
– ident: e_1_2_11_48_1
  doi: 10.1109/JSSC.2011.2162186
– ident: e_1_2_11_12_1
– ident: e_1_2_11_21_1
  doi: 10.1021/acs.nanolett.7b00552
– ident: e_1_2_11_51_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_11_4_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_11_31_1
  doi: 10.3389/fnins.2016.00056
– ident: e_1_2_11_19_1
  doi: 10.1038/s41467-016-0009-6
– ident: e_1_2_11_2_1
  doi: 10.1038/nature14539
– ident: e_1_2_11_9_1
  doi: 10.1038/nature24270
– ident: e_1_2_11_40_1
  doi: 10.1109/LED.2016.2573140
– ident: e_1_2_11_50_1
– ident: e_1_2_11_10_1
  doi: 10.1038/s41928-018-0059-3
– ident: e_1_2_11_33_1
  doi: 10.1002/admt.201800720
SSID ssj0002171027
Score 2.224138
Snippet To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed...
To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in-memory computing with nonvolatile memory (NVM) is proposed...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Central processing units
Chips (memory devices)
Computer architecture
Computer memory
Convolution
CPUs
deep neural networks
Energy efficiency
flash memory
floating gate transistors
in-memory computing
Internet of Things
Neural networks
parallel computing
Parameters
Semiconductor devices
Software
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgfBU7FN0yY5ro9FQRfBB3qKkzSVBVnFVcGbP8Hf6C9xJu0u60G8eGw7LelkJvNNO_mGsR2R1U5VClc_mYlEgkwT0KASRMpSG43eFXfIXZ-qfl_f3JjzqVZfVBPW0AM3itsLeQElVAWE3GCwq3XlQGWQpw6DXQVxm2-qzFQyRWswAm2MnGrM0piKPRiM3jEdFCL-bP0RhSJZ_w-EOY1TY6DpLbKFFiHybjOyJTYThsvsrvfwCFShzOlzF48RJhJ8fH187mMgqnjX-1eifeCHg3tqBMJPhnjtjApp33nTu4FuR4zKD0N44sTKgVL9pgx8tMKuekeXB8dJ2xwh8QhpVFKUNTon4mMjjS6kVCoPiPZAh0wEXbq8kkR1V1e60FUpPChTFnVN_c69ypzMV9ns8HEY1hjHpMXpFLKAaAHzF-_AeMggmBCUK3LXYclYWda3zOHUwOLBNpzHwpJy7US5HbY7kX9qODN-ldwn3U-kiOs6nkALsK0F2L8soMM2xzNnWwccWWK1xzdPZd5hIs7mH0Ox3ZOL28nR-n8MbIPN0wOb4pdNNvvy_Bq22Jx_exmMnrejwX4DwmvtzQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZK4cCFggCxtCAfKnGKGv8kdo7blhWV6KpSAZWTGTtOtVK1W21apN54hD5jn6QzTjZ0DwgJbvkZR47t8Xy2Z75hbFeKxpva4Oynhcw06DwDCyZDpKxtZVG7UoTct89mOrVnZ9XJgyj-jh9i2HAjzUjzNSk4-HbvN2kozNobXN9JmU5PH7HHQihD41rqk2GXBQE3WlCKmUbDn2eIFsyKuTGXe-ufWLNMicB_DXU-xK7J-Ey2_r_az9mzHnjycTdSXrCNOH_JfkwuFkCOz5x20XgyXIk35O7X7T7at5qPQ7gmNgl-ODun_CL8aI7vjsk_94Z3KSGoOEJffhjjJSeyD5Sadt7l7Sv2dfLxy8GnrM-5kAVESiYrygZ1HmF3pStbaG2MiggiwUYhoy29qjUx6DW1LWxdygCmKoumoTTqwQiv1Wu2OV_M4xvGcS3kbQ4iIgjBZVHwUAUQEKsYjS-UH7Fs1d4u9ITklBfjwnVUytJRW7mhrUbswyB_2VFx_FFyn7pvkCIK7fRgsTx3vUa6qAoooS4gqgpRVGNrD0aAyj2iqBrsiO2sOt_1et06IsvHP8-1GjGZuvkvVXHjo9Pvw93bfym0zZ7SdedDs8M2r5bX8R17En5ezdrl-zTe7wEB3_7y
  priority: 102
  providerName: Wiley-Blackwell
Title Floating Gate Transistor‐Based Accurate Digital In‐Memory Computing for Deep Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202200127
https://www.proquest.com/docview/2756858043
https://doaj.org/article/e35a6ad5ae39431f8dba71a30b075da8
Volume 4
WOSCitedRecordID wos000879920500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: P5Z
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: BENPR
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: PIMPY
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Open Access: Wiley-Blackwell Open Access Journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Journals (OA)
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4ELDwFi27LyAYmT1cRxYudU7dKuWIlGEc8WIVl-pVqp2l02LVL_PTNONtADcOAYaxI5GdvzeTz5PkJe8bSx0ktY_UTKmTAiYUYZyQApC1UqmF3xD7nP72RVqfPzsu4Tbm1fVrldE-NC7VcOc-RHSFOucpWI7Hj9naFqFJ6u9hIaO2QPWRJQuqHOvw45FoDbED_llqsx4Udm0d7CppDzeOR6JxZFyv47OPN3tBrDzezR_3b0MXnYA0066UbGE3IvLJ-Sb7OrlcFCZ4pZMxoDVeQJYVOIZp5OnLtB7gh6srhENRE6X7IzrMW9pZ38A94KMJeehLCmSOwBNlVXSd4-I59mpx_fvGW9vgJzgIoky4sG5jdA7FKUKhdCyiwAYDQqpDyowmZeIFte4-F1fMGdkWWRNw1KpjuZWpE9J7vL1TK8IBT2PVYlJg0AOGAL5KwpnUlNKEOQNs_siLDtl9auJx9HDYwr3dEmc42e0YNnRuT1YL_uaDf-aDlFxw1WSJcdG1abS93PPh2y3BTG5yZkJSCmRnlrZGqyxAJi8kaNyOHWl7qfw63-5cgR4XEo_KMrejL_cDFc7f_9mQfkAZp2lTGHZPd6cxNekvvux_Wi3YzJDhf1mOxNT6v6_TgmCsZxbENbPT-rL-Dqy7z6CclF_eA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkuPASIQAEfQJysZr3etfeAUEqIumoSRaKgVkIyXq-3ilQlIduC8qf4jczsC3oATj1w3JXtffjzzGd7_A3ASxEUmcoVWj8ZCC6tHHCrreLIlKVONI6u6oTcp4mazfTJSTLfgR_tWRgKq2xtYmWo85WjNfJ9kinXkR7I8O36K6esUbS72qbQqGFx5LffccpWvklH2L-vhBi_P353yJusAtwhF1A8igtENRLLRCY6klKp0CNNstoHwus4C3NJGnFFjk_LY-GsSuKoKChRuFNBJkNs9wbsSgJ7D3bn6XR-2q3qIMFHj61adciB2LeLcovTUCGqTd4r3q9KEnCF2f7OjysHN777v_2ae3CnodJsWGP_Puz45QP4PD5fWQrlZrQuyCpXXCmh8AP01zkbOndJ6hhstDijfCksXfIpRRtvWZ3ggqoikWcj79eMpEuwzKyOlS8fwsdr-aBH0Fuulv4xMJzZZXpgA4-UCid5LrOJs4H1ifcqi8KsD7ztWeMaeXXK8nFuamFoYQgJpkNCH1535de1sMgfSx4QULpSJAhe3VhtzkxjX4wPIxvbPLI-TJATFjrPrApsOMiQE-ZW92GvxY5prFRpfgGnD6KC3j9exQzTD6fd1ZO_t_kCbh0eTydmks6OnsJtqlbHAe1B72Jz6Z_BTfftYlFunjejiMGX60bnT8e-UT0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC0JceAgQhQV8AHGymjhO7BwQ6lIqql2qSjy0ICTjOM6q0qotzS6of41fx4zzgD0Apz1wTOQ4r88z39jjbwCeiLgqVKnQ-slYcGllxK22iiNTljrXOLrCDrkPh2o200dH-XwHfnR7YSitsrOJwVCXK0dz5EOSKdepjmQyrNq0iPl48mL9lVMFKVpp7cppNBA58NvvGL7Vz6dj_NdPhZi8evfyNW8rDHCHvEDxNKsQ4Ugyc5nrVEqlEo-UyWofC6-zIikl6cVVJd65zISzKs_SqqKi4U7FhUyw30twWWGMSemE8_RTP7-DVB99t-p0IiMxtIt6iwGpEGG595wfDOUCznHc35lycHWTG__zR7oJ11uCzUbNiLgFO355Gz5PTlaWErwZzRay4KCDPgrfRy9espFzZ6SZwcaLY6qiwqZL_oZykLesKXtBlyK9Z2Pv14wETbDNrMmgr-_A-wt5obuwu1wt_T1gGO8VOrKxR6KFoZ8rbO5sbH3uvSrSpBgA7_6yca3oOtX-ODGNXLQwhArTo2IAz_r260Zu5I8t9wk0fSuSCQ8nVptj01od45PUZrZMrU9yZIqVLgurYptEBTLF0uoB7HU4Mq3tqs0vEA1ABBj-41HMaPr2Y390_-99PoarCElzOJ0dPIBrdFWTHLQHu6ebM_8Qrrhvp4t68ygMJwZfLhqaPwGlflig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Floating+Gate+Transistor-Based+Accurate+Digital+In-Memory+Computing+for+Deep+Neural+Networks&rft.jtitle=Advanced+intelligent+systems&rft.au=Han%2C+Runze&rft.au=Huang%2C+Peng&rft.au=Yachen+Xiang&rft.au=Hu%2C+Hong&rft.date=2022-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2640-4567&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1002%2Faisy.202200127&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon