Breast cancer histology images classification: Training from scratch or transfer learning?

We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ICT express Ročník 4; číslo 4; s. 247 - 254
Hlavní autoři: Shallu, Mehra, Rajesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier 01.12.2018
한국통신학회
Témata:
ISSN:2405-9595, 2405-9595
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concurrently, we examined the effect of training–testing data size on the performance of considered networks. A fine-tuned pre-trained VGG16 with logistic regression classifier yielded the best performance with 92.60% accuracy, 95.65% area under ROC curve (AUC), and 95.95% accuracy precision score (APS) for 90%–10% training–testing data splitting. Layer-wise fine-tuning and different weight initialization schemes can be a future aspect of this study. Keywords: Breast cancer, Histopathological images, Convolutional neural network, Full training, Transfer learning
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2018.10.007