Parallel maximum independent set in convex bipartite graphs
A bipartite graph G = ( V, W, E) is called convex if the vertices in W can be ordered in such a way that the elements of W adjacent to any vertex υ ϵ V form an interval (i.e. a sequence consecutively numbered vertices). Such a graph can be represented in a compact form that requires O( n) space, whe...
Uloženo v:
| Vydáno v: | Information processing letters Ročník 59; číslo 6; s. 289 - 294 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
23.09.1996
Elsevier Science Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A bipartite graph
G = (
V,
W,
E) is called convex if the vertices in
W can be ordered in such a way that the elements of
W adjacent to any vertex
υ
ϵ
V form an interval (i.e. a sequence consecutively numbered vertices). Such a graph can be represented in a compact form that requires O(
n) space, where
n = max{¦V¦, ¦W¦}. Given a convex bipartite graph
G in the compact form Dekel and Sahni designed an
O(
log
2(
n))-time,
n-processor EREW PRAM algorithm to compute a maximum matching in
G. We show that the matching produced by their algorithm can be used to construct optimally in parallel a maximum set of independent vertices. Our algorithm runs in
O(
logn) time with
n
logn
processors on an Arbitrary CRCW PRAM. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/0020-0190(96)00131-7 |