Parallel maximum independent set in convex bipartite graphs

A bipartite graph G = ( V, W, E) is called convex if the vertices in W can be ordered in such a way that the elements of W adjacent to any vertex υ ϵ V form an interval (i.e. a sequence consecutively numbered vertices). Such a graph can be represented in a compact form that requires O( n) space, whe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 59; číslo 6; s. 289 - 294
Hlavní autori: Czumaj, Artur, Diks, Krzysztof, Przytycka, Teresa M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 23.09.1996
Elsevier Science
Elsevier Sequoia S.A
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A bipartite graph G = ( V, W, E) is called convex if the vertices in W can be ordered in such a way that the elements of W adjacent to any vertex υ ϵ V form an interval (i.e. a sequence consecutively numbered vertices). Such a graph can be represented in a compact form that requires O( n) space, where n = max{¦V¦, ¦W¦}. Given a convex bipartite graph G in the compact form Dekel and Sahni designed an O( log 2( n))-time, n-processor EREW PRAM algorithm to compute a maximum matching in G. We show that the matching produced by their algorithm can be used to construct optimally in parallel a maximum set of independent vertices. Our algorithm runs in O( logn) time with n logn processors on an Arbitrary CRCW PRAM.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(96)00131-7