Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker
The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper a...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 14; číslo 5; s. 671 - 687 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of "learning while optimizing," through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2010.2058118 |