An investigation on data mining and operating optimization for wet flue gas desulfurization systems

•The optimal target database of operating conditions for WFGD was investigated.•An improved fuzzy clustering (IFC) algorithm was proposed for data clustering.•L-G ratio, pH and slurry density were obtained to minimize unit SO2 removal cost.•An overall continuous optimal operation database was establ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fuel (Guildford) Ročník 258; s. 116178
Hlavní autori: Qiao, Zongliang, Wang, Xingchao, Gu, Hui, Tang, Youfei, Si, Fengqi, Romero, Carlos E., Yao, XueZhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 15.12.2019
Elsevier BV
Predmet:
ISSN:0016-2361, 1873-7153
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The optimal target database of operating conditions for WFGD was investigated.•An improved fuzzy clustering (IFC) algorithm was proposed for data clustering.•L-G ratio, pH and slurry density were obtained to minimize unit SO2 removal cost.•An overall continuous optimal operation database was established. Finding the best conditions for current operation from historical data is of great meaning for power plants. In order to obtain the optimal conditions, a comprehensive evaluation criterion, using the minimum cost as an objective function, was established for a wet flue gas desulfurization (WFGD) system in this paper. A basic procedure was presented to set up the database of the system operating target conditions. To improve the accuracy of mining target data, an improved fuzzy clustering (IFC) algorithm was proposed. This algorithm used K-means results as initial conditions and fuzzy C-means algorithm as analytical method. Besides, the information entropy was also utilized in the IFC algorithm as an evaluation index. Results indicated that the proposed algorithm was more accurate than typical K-means and fuzzy C-means in data clustering. Additionally, the operating data for the WFGD system of a 600 MW unit were selected as the modeling samples. In this model, the unit SO2 removal cost was selected as the criterion for the assessment of operating conditions. The operating condition data were divided into different operating clusters based on the unit load and inlet SO2 concentration of the WFGD system. Using pH, liquid-gas ratio, and slurry density as an initial condition, optimal steady-state operating data were obtained. Finally, an overall operation database of this system was established, which could successfully obtain the continuous optimal operating conditions and provide operating guidance.
AbstractList •The optimal target database of operating conditions for WFGD was investigated.•An improved fuzzy clustering (IFC) algorithm was proposed for data clustering.•L-G ratio, pH and slurry density were obtained to minimize unit SO2 removal cost.•An overall continuous optimal operation database was established. Finding the best conditions for current operation from historical data is of great meaning for power plants. In order to obtain the optimal conditions, a comprehensive evaluation criterion, using the minimum cost as an objective function, was established for a wet flue gas desulfurization (WFGD) system in this paper. A basic procedure was presented to set up the database of the system operating target conditions. To improve the accuracy of mining target data, an improved fuzzy clustering (IFC) algorithm was proposed. This algorithm used K-means results as initial conditions and fuzzy C-means algorithm as analytical method. Besides, the information entropy was also utilized in the IFC algorithm as an evaluation index. Results indicated that the proposed algorithm was more accurate than typical K-means and fuzzy C-means in data clustering. Additionally, the operating data for the WFGD system of a 600 MW unit were selected as the modeling samples. In this model, the unit SO2 removal cost was selected as the criterion for the assessment of operating conditions. The operating condition data were divided into different operating clusters based on the unit load and inlet SO2 concentration of the WFGD system. Using pH, liquid-gas ratio, and slurry density as an initial condition, optimal steady-state operating data were obtained. Finally, an overall operation database of this system was established, which could successfully obtain the continuous optimal operating conditions and provide operating guidance.
Finding the best conditions for current operation from historical data is of great meaning for power plants. In order to obtain the optimal conditions, a comprehensive evaluation criterion, using the minimum cost as an objective function, was established for a wet flue gas desulfurization (WFGD) system in this paper. A basic procedure was presented to set up the database of the system operating target conditions. To improve the accuracy of mining target data, an improved fuzzy clustering (IFC) algorithm was proposed. This algorithm used K-means results as initial conditions and fuzzy C-means algorithm as analytical method. Besides, the information entropy was also utilized in the IFC algorithm as an evaluation index. Results indicated that the proposed algorithm was more accurate than typical K-means and fuzzy C-means in data clustering. Additionally, the operating data for the WFGD system of a 600 MW unit were selected as the modeling samples. In this model, the unit SO2 removal cost was selected as the criterion for the assessment of operating conditions. The operating condition data were divided into different operating clusters based on the unit load and inlet SO2 concentration of the WFGD system. Using pH, liquid-gas ratio, and slurry density as an initial condition, optimal steady-state operating data were obtained. Finally, an overall operation database of this system was established, which could successfully obtain the continuous optimal operating conditions and provide operating guidance.
ArticleNumber 116178
Author Tang, Youfei
Wang, Xingchao
Qiao, Zongliang
Gu, Hui
Si, Fengqi
Romero, Carlos E.
Yao, XueZhong
Author_xml – sequence: 1
  givenname: Zongliang
  surname: Qiao
  fullname: Qiao, Zongliang
  email: qiaozongliang@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Xingchao
  orcidid: 0000-0002-6136-7717
  surname: Wang
  fullname: Wang, Xingchao
  organization: Energy Research Center, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 3
  givenname: Hui
  surname: Gu
  fullname: Gu, Hui
  organization: School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
– sequence: 4
  givenname: Youfei
  surname: Tang
  fullname: Tang, Youfei
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
– sequence: 5
  givenname: Fengqi
  surname: Si
  fullname: Si, Fengqi
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
– sequence: 6
  givenname: Carlos E.
  surname: Romero
  fullname: Romero, Carlos E.
  organization: Energy Research Center, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 7
  givenname: XueZhong
  surname: Yao
  fullname: Yao, XueZhong
  organization: Datang Environment Industry Group Co., Ltd., Nanjing 211106, China
BookMark eNp9kF1LBCEUhiUK2rb-QFdC17N5xtn5gG4i-oKgm7oWR4-Ly6xu6hT163ObuuliQRD1eY687wk5dN4hIefAFsCgvlwvzIjDomTQLQBqaNoDMoO24UUDS35IZixTRclrOCYnMa4ZY027rGZEXTtq3TvGZFcyWe9oXlomSTfWWbei0mnqtxjyYz75bbIb-zWRxgf6gYmaYUS6kpFqjONgxvAHxM-YcBNPyZGRQ8Sz331OXu9uX24eiqfn-8eb66dC8Q5SUdYachglq2Zpyk5JQFXVsuurvueM9arXVcN004ExqHnZs3yhTV_pqsPSAJ-Ti2nuNvi3MUcSaz8Gl78UJWctg7blbabKiVLBxxjQiG2wGxk-BTCxK1Osxa5MsStTTGVmqf0nKZt-QqYg7bBfvZpUzNHfLQYRlUWnUNuAKgnt7T79GzJelH0
CitedBy_id crossref_primary_10_1007_s11579_023_00340_0
crossref_primary_10_1007_s42243_021_00571_9
crossref_primary_10_1016_j_jece_2025_117842
crossref_primary_10_1016_j_energy_2024_131522
crossref_primary_10_1016_j_psep_2022_01_035
crossref_primary_10_1016_j_fuel_2020_119714
crossref_primary_10_1016_j_compchemeng_2020_107000
crossref_primary_10_1007_s11356_023_25988_5
crossref_primary_10_3390_su16198521
crossref_primary_10_1002_acs_3480
crossref_primary_10_1088_1755_1315_651_2_022079
crossref_primary_10_26599_BDMA_2023_9020002
crossref_primary_10_1016_j_applthermaleng_2025_125589
crossref_primary_10_3390_membranes12010047
crossref_primary_10_1016_j_energy_2023_127959
crossref_primary_10_3390_su13169015
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1016_j_energy_2023_129331
crossref_primary_10_1016_j_energy_2020_118555
crossref_primary_10_1016_j_fuel_2020_119209
crossref_primary_10_1111_exsy_12614
crossref_primary_10_1016_j_conengprac_2023_105587
crossref_primary_10_1109_TASE_2023_3293843
crossref_primary_10_1016_j_apenergy_2023_122195
crossref_primary_10_1016_j_measurement_2022_110954
crossref_primary_10_1016_j_seppur_2021_119849
crossref_primary_10_1016_j_chemosphere_2021_130084
crossref_primary_10_1016_j_engappai_2025_110294
crossref_primary_10_1016_j_biteb_2022_101095
crossref_primary_10_1109_ACCESS_2021_3055226
crossref_primary_10_1155_2022_5374111
Cites_doi 10.1016/j.fuproc.2017.03.024
10.1016/j.energy.2018.01.175
10.1016/j.fuproc.2014.08.009
10.1016/j.apenergy.2014.05.006
10.1016/j.apcata.2015.10.008
10.1016/0098-3004(84)90020-7
10.1016/j.fuproc.2008.04.004
10.1016/j.patrec.2019.02.017
10.1016/j.fuproc.2010.07.020
10.1515/eletel-2017-0046
10.1016/j.patcog.2017.06.023
10.1016/j.dsp.2019.04.004
10.1016/j.fss.2015.06.024
10.1016/j.engappai.2016.08.009
10.1016/j.knosys.2018.09.007
10.1016/j.applthermaleng.2019.02.032
10.1016/j.ces.2016.12.062
10.1016/j.jprocont.2016.01.002
10.1016/j.eswa.2015.08.036
10.1021/es304090e
10.1016/j.joei.2014.07.003
10.1016/j.jmva.2018.12.008
10.3390/e16073732
10.1016/j.bdr.2018.05.002
10.1016/j.joei.2014.09.002
10.1016/j.fuproc.2016.01.033
10.1016/j.cej.2016.01.020
10.1016/j.patcog.2019.04.014
10.1016/j.ins.2015.03.062
10.1016/j.eswa.2017.09.005
10.1016/j.engfracmech.2018.07.005
10.1016/j.mineng.2015.11.011
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Dec 15, 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Dec 15, 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2019.116178
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2019_116178
S0016236119315327
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c391t-26d1101ca475f29ca1ec46a9b4bb300bcbd470d791ffed32b0bd4dfb4d49e2f13
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487820500075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 03:19:36 EDT 2025
Sat Nov 29 07:33:30 EST 2025
Tue Nov 18 22:10:56 EST 2025
Fri Feb 23 02:23:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimal target operating condition database
Online
Data mining
Improved fuzzy clustering algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-26d1101ca475f29ca1ec46a9b4bb300bcbd470d791ffed32b0bd4dfb4d49e2f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6136-7717
PQID 2308018838
PQPubID 2045474
ParticipantIDs proquest_journals_2308018838
crossref_primary_10_1016_j_fuel_2019_116178
crossref_citationtrail_10_1016_j_fuel_2019_116178
elsevier_sciencedirect_doi_10_1016_j_fuel_2019_116178
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Wang, Zhuo (b0055) 2017; 162
Subashini, Sahoo, Sunil (b0125) 2016; 43
1990.
Blasio, Carletti, Lundell (b0025) 2016; 86
Falniowski (b0145) 2014; 16
Jin, Weng (b0130) 2019; 90
Kallinikos, Farsari, Spartinos (b0045) 2010; 91
Zahra, Ghazanfar, Khalid (b0175) 2015; 320
Wang, Zhu, Zhang (b0050) 2015; 88
Viattchenin, Yaroma (b0155) 2017; 63
Gu, Cui, Zhu (b0080) 2018; 148
Wang, Wang, Xu (b0060) 2015; 508
Zheng, Xu, Zhang (b0005) 2014; 129
Tripathi, Sharma, Bala (b0095) 2018; 14
Klawonn, Kruse, Winkler (b0170) 2015; 281
Bao, Yang, Yan (b0030) 2010; 108
Fränti, Sieranoja (b0085) 2019; 93
Wang, Zhuang, Dai (b0065) 2017; 162
Huang, Ran, Hao (b0020) 2016; 289
Tunckaya, Koklukaya (b0070) 2015; 88
Meilă (b0100) 2019; 173
Islam, Estivill-Castro, Rahman (b0090) 2018; 91
Dotto, Farcomeni, Garca-Escudero (b0160) 2016; 11
Bai, Cheng, Liang (b0105) 2017; 71
Zhong, Gao, Huo (b0040) 2008; 89
Behnia, Chai, GhasemiGol (b0135) 2019; 210
Raquel, Mercedes, Rosa (b0015) 2013; 47
Al-Maliki, Alobaid, Kez (b0075) 2016; 39
Thong, Le (b0165) 2016; 56
Bezdek, Ehrlich, Full (b0180) 1984; 10
Altun (b0035) 2014; 128
Zhao, Liang, Dang (b0115) 2019; 163
Verma, Gupta, Kumar (b0110) 2019; 122
Xu, Gu, Ma (b0120) 2019; 151
Wu, Yang, Yan (b0010) 2016; 145
UCI machine learning repository: Lenses data set
Wang (10.1016/j.fuel.2019.116178_b0065) 2017; 162
Wu (10.1016/j.fuel.2019.116178_b0010) 2016; 145
Huang (10.1016/j.fuel.2019.116178_b0020) 2016; 289
Viattchenin (10.1016/j.fuel.2019.116178_b0155) 2017; 63
Zhao (10.1016/j.fuel.2019.116178_b0115) 2019; 163
Wang (10.1016/j.fuel.2019.116178_b0050) 2015; 88
Klawonn (10.1016/j.fuel.2019.116178_b0170) 2015; 281
Tripathi (10.1016/j.fuel.2019.116178_b0095) 2018; 14
Tunckaya (10.1016/j.fuel.2019.116178_b0070) 2015; 88
Subashini (10.1016/j.fuel.2019.116178_b0125) 2016; 43
Jin (10.1016/j.fuel.2019.116178_b0130) 2019; 90
Thong (10.1016/j.fuel.2019.116178_b0165) 2016; 56
Dotto (10.1016/j.fuel.2019.116178_b0160) 2016; 11
Al-Maliki (10.1016/j.fuel.2019.116178_b0075) 2016; 39
Blasio (10.1016/j.fuel.2019.116178_b0025) 2016; 86
Bao (10.1016/j.fuel.2019.116178_b0030) 2010; 108
Bai (10.1016/j.fuel.2019.116178_b0105) 2017; 71
Verma (10.1016/j.fuel.2019.116178_b0110) 2019; 122
Bezdek (10.1016/j.fuel.2019.116178_b0180) 1984; 10
Behnia (10.1016/j.fuel.2019.116178_b0135) 2019; 210
Raquel (10.1016/j.fuel.2019.116178_b0015) 2013; 47
Gu (10.1016/j.fuel.2019.116178_b0080) 2018; 148
Xu (10.1016/j.fuel.2019.116178_b0120) 2019; 151
Altun (10.1016/j.fuel.2019.116178_b0035) 2014; 128
Zhong (10.1016/j.fuel.2019.116178_b0040) 2008; 89
Meilă (10.1016/j.fuel.2019.116178_b0100) 2019; 173
Islam (10.1016/j.fuel.2019.116178_b0090) 2018; 91
Zahra (10.1016/j.fuel.2019.116178_b0175) 2015; 320
Wang (10.1016/j.fuel.2019.116178_b0060) 2015; 508
Zheng (10.1016/j.fuel.2019.116178_b0005) 2014; 129
Kallinikos (10.1016/j.fuel.2019.116178_b0045) 2010; 91
Falniowski (10.1016/j.fuel.2019.116178_b0145) 2014; 16
10.1016/j.fuel.2019.116178_b0185
Fränti (10.1016/j.fuel.2019.116178_b0085) 2019; 93
Chen (10.1016/j.fuel.2019.116178_b0055) 2017; 162
References_xml – volume: 88
  start-page: 118
  year: 2015
  end-page: 125
  ident: b0070
  article-title: Comparative analysis and prediction study for effluent gas emissions in a coal-fired thermal power plant using artificial intelligence and statistical tools
  publication-title: J Energy Inst
– volume: 91
  start-page: 402
  year: 2018
  end-page: 417
  ident: b0090
  article-title: Combining K-Means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering
  publication-title: Expert Syst Appl
– reference: UCI machine learning repository: Lenses data set,
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: b0105
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recogn
– volume: 89
  start-page: 1025
  year: 2008
  end-page: 1032
  ident: b0040
  article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants
  publication-title: Fuel Process Technol
– volume: 128
  start-page: 461
  year: 2014
  end-page: 470
  ident: b0035
  article-title: Assessment of marble waste utilization as an alternative sorbent to limestone for so 2 control
  publication-title: Fuel Process Technol
– volume: 148
  start-page: 789
  year: 2018
  end-page: 801
  ident: b0080
  article-title: A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring
  publication-title: Energy
– volume: 210
  start-page: 212
  year: 2019
  end-page: 227
  ident: b0135
  article-title: Advanced damage detection technique by integration of unsupervised clustering into acoustic emission
  publication-title: Eng Fract Mech
– volume: 122
  start-page: 45
  year: 2019
  end-page: 52
  ident: b0110
  article-title: A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree
  publication-title: Pattern Recogn Lett
– volume: 108
  start-page: 73
  year: 2010
  end-page: 79
  ident: b0030
  article-title: Experimental study of fine particles removal in the desulfurized scrubbing flue gas
  publication-title: Fuel
– volume: 56
  start-page: 121
  year: 2016
  end-page: 130
  ident: b0165
  article-title: Picture fuzzy clustering for complex data
  publication-title: Eng Appl Artif Intell
– volume: 16
  start-page: 3732
  year: 2014
  end-page: 3753
  ident: b0145
  article-title: On the connections of generalized entropies with shannon and kolmogorov-sinai
  publication-title: Entropy
– reference: , 1990.
– volume: 162
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0055
  article-title: Experimental and numerical study on effects of defectors on flow field distribution and desulfurization efficiency in spray towers
  publication-title: Fuel Process Technol
– volume: 162
  start-page: 227
  year: 2017
  end-page: 244
  ident: b0065
  article-title: Synergistic effect of droplet self-adjustment and rod bank internal on fluid distribution in a wfgd spray column
  publication-title: Chem Eng Sci
– volume: 163
  start-page: 416
  year: 2019
  end-page: 428
  ident: b0115
  article-title: A stratified sampling based clustering algorithm for large-scale data
  publication-title: Knowl-Based Syst
– volume: 63
  start-page: 341
  year: 2017
  end-page: 346
  ident: b0155
  article-title: A method for estimating the least number of objects in fuzzy clusters
  publication-title: Int. J. Electron Telecommun
– volume: 508
  start-page: 52
  year: 2015
  end-page: 60
  ident: b0060
  article-title: Selectivity of transition metal catalysts in promoting the oxidation of solid sulfites in flue gas desulfurization
  publication-title: Appl Catal A
– volume: 145
  start-page: 116
  year: 2016
  end-page: 122
  ident: b0010
  article-title: Improving the removal of ne particles by heterogeneous condensation during wfgd processes
  publication-title: Fuel Process Technol
– volume: 93
  start-page: 95
  year: 2019
  end-page: 112
  ident: b0085
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recogn
– volume: 289
  start-page: 537
  year: 2016
  end-page: 543
  ident: b0020
  article-title: Investigation on the removal of so3 in ammonia-based wfgd system
  publication-title: Chem Eng J
– volume: 129
  start-page: 187
  year: 2014
  end-page: 194
  ident: b0005
  article-title: Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for wfgd system
  publication-title: Appl Energy
– volume: 90
  start-page: 100
  year: 2019
  end-page: 109
  ident: b0130
  article-title: A robust active contour model driven by fuzzy c-means energy for fast image segmentation
  publication-title: Digital Signal Process
– volume: 43
  start-page: 186
  year: 2016
  end-page: 196
  ident: b0125
  article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
  publication-title: Expert Syst Appl
– volume: 91
  start-page: 1794
  year: 2010
  end-page: 1802
  ident: b0045
  article-title: Simulation of the operation of an industrial wet flue gas desulfurization system
  publication-title: Fuel Process Technol
– volume: 88
  start-page: 284
  year: 2015
  end-page: 291
  ident: b0050
  article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower
  publication-title: J Energy Inst
– volume: 151
  start-page: 344
  year: 2019
  end-page: 353
  ident: b0120
  article-title: Data based online operational performance optimization with varying work conditions for steam-turbine system
  publication-title: Appl Therm Eng
– volume: 11
  start-page: 1
  year: 2016
  end-page: 20
  ident: b0160
  article-title: A fuzzy approach to robust regression clustering
  publication-title: Adv Data Anal Classif
– volume: 320
  start-page: 156
  year: 2015
  end-page: 189
  ident: b0175
  article-title: Novel centroid selection approaches for k means-clustering based recommender systems
  publication-title: Inf Sci Int J
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0180
  article-title: Fcm: The fuzzy c -means clustering algorithm
  publication-title: Comput Geosci
– volume: 86
  start-page: 43
  year: 2016
  end-page: 58
  ident: b0025
  article-title: Employing a step-wise titration method under semi-slow reaction regime for evaluating the reactivity of limestone and dolomite in acidic environment
  publication-title: Miner Eng
– volume: 173
  start-page: 1
  year: 2019
  end-page: 17
  ident: b0100
  article-title: Good (K-means) clusterings are unique (up to small perturbations)
  publication-title: J. Multivariate Anal
– volume: 47
  start-page: 2974
  year: 2013
  end-page: 2981
  ident: b0015
  article-title: Influence of limestone characteristics on mercury reemission in wfgd systems
  publication-title: Environ Sci Technol
– volume: 14
  start-page: 93
  year: 2018
  end-page: 100
  ident: b0095
  article-title: A novel clustering method using enhanced grey wolf optimizer and mapreduce
  publication-title: Big Data Res
– volume: 281
  start-page: 272
  year: 2015
  end-page: 279
  ident: b0170
  article-title: Fuzzy clustering: more than just fuzzification
  publication-title: Fuzzy Sets Syst
– volume: 39
  start-page: 123
  year: 2016
  end-page: 138
  ident: b0075
  article-title: Modelling and dynamic simulation of a parabolic trough power plant
  publication-title: J Process Control
– volume: 162
  start-page: 1
  year: 2017
  ident: 10.1016/j.fuel.2019.116178_b0055
  article-title: Experimental and numerical study on effects of defectors on flow field distribution and desulfurization efficiency in spray towers
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2017.03.024
– volume: 148
  start-page: 789
  year: 2018
  ident: 10.1016/j.fuel.2019.116178_b0080
  article-title: A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.175
– volume: 128
  start-page: 461
  year: 2014
  ident: 10.1016/j.fuel.2019.116178_b0035
  article-title: Assessment of marble waste utilization as an alternative sorbent to limestone for so 2 control
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2014.08.009
– volume: 129
  start-page: 187
  year: 2014
  ident: 10.1016/j.fuel.2019.116178_b0005
  article-title: Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for wfgd system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.006
– ident: 10.1016/j.fuel.2019.116178_b0185
– volume: 508
  start-page: 52
  year: 2015
  ident: 10.1016/j.fuel.2019.116178_b0060
  article-title: Selectivity of transition metal catalysts in promoting the oxidation of solid sulfites in flue gas desulfurization
  publication-title: Appl Catal A
  doi: 10.1016/j.apcata.2015.10.008
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.fuel.2019.116178_b0180
  article-title: Fcm: The fuzzy c -means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 89
  start-page: 1025
  year: 2008
  ident: 10.1016/j.fuel.2019.116178_b0040
  article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2008.04.004
– volume: 122
  start-page: 45
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0110
  article-title: A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.02.017
– volume: 91
  start-page: 1794
  year: 2010
  ident: 10.1016/j.fuel.2019.116178_b0045
  article-title: Simulation of the operation of an industrial wet flue gas desulfurization system
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2010.07.020
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0160
  article-title: A fuzzy approach to robust regression clustering
  publication-title: Adv Data Anal Classif
– volume: 63
  start-page: 341
  year: 2017
  ident: 10.1016/j.fuel.2019.116178_b0155
  article-title: A method for estimating the least number of objects in fuzzy clusters
  publication-title: Int. J. Electron Telecommun
  doi: 10.1515/eletel-2017-0046
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.fuel.2019.116178_b0105
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.06.023
– volume: 90
  start-page: 100
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0130
  article-title: A robust active contour model driven by fuzzy c-means energy for fast image segmentation
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2019.04.004
– volume: 281
  start-page: 272
  year: 2015
  ident: 10.1016/j.fuel.2019.116178_b0170
  article-title: Fuzzy clustering: more than just fuzzification
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2015.06.024
– volume: 56
  start-page: 121
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0165
  article-title: Picture fuzzy clustering for complex data
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.08.009
– volume: 163
  start-page: 416
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0115
  article-title: A stratified sampling based clustering algorithm for large-scale data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.09.007
– volume: 151
  start-page: 344
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0120
  article-title: Data based online operational performance optimization with varying work conditions for steam-turbine system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.02.032
– volume: 162
  start-page: 227
  year: 2017
  ident: 10.1016/j.fuel.2019.116178_b0065
  article-title: Synergistic effect of droplet self-adjustment and rod bank internal on fluid distribution in a wfgd spray column
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2016.12.062
– volume: 39
  start-page: 123
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0075
  article-title: Modelling and dynamic simulation of a parabolic trough power plant
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2016.01.002
– volume: 43
  start-page: 186
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0125
  article-title: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.08.036
– volume: 47
  start-page: 2974
  year: 2013
  ident: 10.1016/j.fuel.2019.116178_b0015
  article-title: Influence of limestone characteristics on mercury reemission in wfgd systems
  publication-title: Environ Sci Technol
  doi: 10.1021/es304090e
– volume: 108
  start-page: 73
  year: 2010
  ident: 10.1016/j.fuel.2019.116178_b0030
  article-title: Experimental study of fine particles removal in the desulfurized scrubbing flue gas
  publication-title: Fuel
– volume: 88
  start-page: 118
  year: 2015
  ident: 10.1016/j.fuel.2019.116178_b0070
  article-title: Comparative analysis and prediction study for effluent gas emissions in a coal-fired thermal power plant using artificial intelligence and statistical tools
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2014.07.003
– volume: 173
  start-page: 1
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0100
  article-title: Good (K-means) clusterings are unique (up to small perturbations)
  publication-title: J. Multivariate Anal
  doi: 10.1016/j.jmva.2018.12.008
– volume: 16
  start-page: 3732
  year: 2014
  ident: 10.1016/j.fuel.2019.116178_b0145
  article-title: On the connections of generalized entropies with shannon and kolmogorov-sinai
  publication-title: Entropy
  doi: 10.3390/e16073732
– volume: 14
  start-page: 93
  year: 2018
  ident: 10.1016/j.fuel.2019.116178_b0095
  article-title: A novel clustering method using enhanced grey wolf optimizer and mapreduce
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2018.05.002
– volume: 88
  start-page: 284
  year: 2015
  ident: 10.1016/j.fuel.2019.116178_b0050
  article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2014.09.002
– volume: 145
  start-page: 116
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0010
  article-title: Improving the removal of ne particles by heterogeneous condensation during wfgd processes
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2016.01.033
– volume: 289
  start-page: 537
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0020
  article-title: Investigation on the removal of so3 in ammonia-based wfgd system
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.01.020
– volume: 93
  start-page: 95
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0085
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.04.014
– volume: 320
  start-page: 156
  year: 2015
  ident: 10.1016/j.fuel.2019.116178_b0175
  article-title: Novel centroid selection approaches for k means-clustering based recommender systems
  publication-title: Inf Sci Int J
  doi: 10.1016/j.ins.2015.03.062
– volume: 91
  start-page: 402
  year: 2018
  ident: 10.1016/j.fuel.2019.116178_b0090
  article-title: Combining K-Means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.005
– volume: 210
  start-page: 212
  year: 2019
  ident: 10.1016/j.fuel.2019.116178_b0135
  article-title: Advanced damage detection technique by integration of unsupervised clustering into acoustic emission
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.07.005
– volume: 86
  start-page: 43
  year: 2016
  ident: 10.1016/j.fuel.2019.116178_b0025
  article-title: Employing a step-wise titration method under semi-slow reaction regime for evaluating the reactivity of limestone and dolomite in acidic environment
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2015.11.011
SSID ssj0007854
Score 2.4507945
Snippet •The optimal target database of operating conditions for WFGD was investigated.•An improved fuzzy clustering (IFC) algorithm was proposed for data...
Finding the best conditions for current operation from historical data is of great meaning for power plants. In order to obtain the optimal conditions, a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116178
SubjectTerms Air pollution control
Algorithms
Clustering
Criteria
Data mining
Desulfurization
Desulfurizing
Electric power generation
Entropy (Information theory)
Evaluation
Flue gas
Flue gas desulfurization
Improved fuzzy clustering algorithm
Information processing
Initial conditions
Minimum cost
Objective function
Online
Optimal target operating condition database
Optimization
Pollution control equipment
Power plants
Slurries
Sulfur dioxide
Unit loads
Title An investigation on data mining and operating optimization for wet flue gas desulfurization systems
URI https://dx.doi.org/10.1016/j.fuel.2019.116178
https://www.proquest.com/docview/2308018838
Volume 258
WOSCitedRecordID wos000487820500075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iMJAfeIsyxYlz8WOFhgChCaSBKl4iX6FTl1ZNs-3nc3xJmlVsYg9IVVRZtuX2-3x8fHIuCL0rMlUa2EMx5YLHVFQ0ZoIAILnUREiSClcz8seX8uSkms3Y18nkso-FuViUTVNdXbHVf4Ua2gBsGzp7B7iHSaEBvgPo8ATY4flPwE-t7-KQPMOqg01k_UCjc1cLwr0tWK5sLmXn8Awi4zzEYjqXw0u9iWzdkugXbyOl225hunXfoR3lN-9re3Z64WwNtr6295QfbAvf5txZYn8ubbAwD4ekM997ETODJcjffDl4AXXuKOzmW4OC7whCyej52ERBXH0FH6TZi11SxDbLy1jspj5lexCcxN6zqr_KdG9eODsy8HusLx472na-nkB752Ab3A17T7az2s5R2zlqP8c9tJ-WOQNxuD_9dDz7PBziZZX7BN5h5SHeyrsG7q7kJp1m53R3KsvpY_Qo3DXw1HPkCZro5il6OMpA-QzJaYOvsQXDx7IFe7ZgYAse2ILHbMEANga2YMsWDGzBO2zBgS3P0fcPx6fvP8ah7kYsM0Y2cVooUAqJ5LTMTcokJ1rSgjNBhciSREihaJmokhFjtMpSkUCDMoIqynRqSPYC7TXLRr-0jnPM2Fhmk-qCunBdZRIlUhheFAk3B4j0_1wtQ1J6WxtlUd-M2QGKhjErn5Ll1t55D0gdlEqvLNbAr1vHHfbo1WF3tzXc10Gjq6qsenWnRbxGD7b74hDtbdadfoPuy4vNvF2_Ddz7A8o_pNQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+on+data+mining+and+operating+optimization+for+wet+flue+gas+desulfurization+systems&rft.jtitle=Fuel+%28Guildford%29&rft.au=Qiao%2C+Zongliang&rft.au=Wang%2C+Xingchao&rft.au=Gu%2C+Hui&rft.au=Tang%2C+Youfei&rft.date=2019-12-15&rft.issn=0016-2361&rft.volume=258&rft.spage=116178&rft_id=info:doi/10.1016%2Fj.fuel.2019.116178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2019_116178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon