A Cartesian grid embedded boundary method for hyperbolic conservation laws
We present a second-order Godunov algorithm to solve time-dependent hyperbolic systems of conservation laws on irregular domains. Our approach is based on a formally consistent discretization of the conservation laws on a finite-volume grid obtained from intersecting the domain with a Cartesian grid...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 211; H. 1; S. 347 - 366 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Inc
2006
Elsevier |
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present a second-order Godunov algorithm to solve time-dependent hyperbolic systems of conservation laws on irregular domains. Our approach is based on a formally consistent discretization of the conservation laws on a finite-volume grid obtained from intersecting the domain with a Cartesian grid. We address the small-cell stability problem associated with such methods by hybridizing our conservative discretization with a stable, nonconservative discretization at irregular control volumes, and redistributing the difference in the mass increments to nearby cells in a way that preserves stability and local conservation. The resulting method is second-order accurate in
L
1 for smooth problems, and is robust in the presence of large-amplitude discontinuities intersecting the irregular boundary. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2005.05.026 |