Generalized matrix inversion is not harder than matrix multiplication

Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 230; H. 1; S. 270 - 282
Hauptverfasser: PETKOVIC, Marko D, STANIMIROVIC, Predrag S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 01.08.2009
Elsevier
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized { 2 , 3 } and { 2 , 4 } inverses. Introduced algorithms are not harder than the matrix–matrix multiplication.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2008.11.012