Generalized matrix inversion is not harder than matrix multiplication
Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and applied mathematics Jg. 230; H. 1; S. 270 - 282 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
01.08.2009
Elsevier |
| Schlagworte: | |
| ISSN: | 0377-0427, 1879-1778 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix
A
∈
R
n
×
n
. We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized
{
2
,
3
}
and
{
2
,
4
}
inverses. Introduced algorithms are not harder than the matrix–matrix multiplication. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2008.11.012 |