Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simu...
Saved in:
| Published in: | Journal of cleaner production Vol. 181; pp. 584 - 598 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
20.04.2018
|
| Subjects: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature. |
|---|---|
| AbstractList | This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature. |
| Author | Han, Yu-yan Wang, Cun-gang Gao, Kai-zhou Li, Jun-qing Sang, Hong-yan |
| Author_xml | – sequence: 1 givenname: Jun-qing surname: Li fullname: Li, Jun-qing email: lijunqing@lcu-cs.com organization: School of Information Science and Engineering, Shandong Normal University, 250014, PR China – sequence: 2 givenname: Hong-yan surname: Sang fullname: Sang, Hong-yan email: sanghongyan@lcu-cs.com organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China – sequence: 3 givenname: Yu-yan surname: Han fullname: Han, Yu-yan organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China – sequence: 4 givenname: Cun-gang surname: Wang fullname: Wang, Cun-gang organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China – sequence: 5 givenname: Kai-zhou surname: Gao fullname: Gao, Kai-zhou organization: College of Computer Science, Liaocheng University, Liaocheng 252059, PR China |
| BookMark | eNqFkUtr3TAQhUVJoTdpf0JBy27sjvwWXZQQ8oJAN-1aWNLoXhnZciU5yc2vr92bVTZZDQznHGa-c07OJj8hIV8Z5AxY833IB-VwDj4vgHU5FDlA9YHsWNfyjLVdc0Z2wGueNXXRfCLnMQ4ArIW22pHna2OssjglOi4u2czLAVWyj0j9nOxoX_pk_UR7t_fBpsNIjQ_0cJTBamqcf6Lx4Gca1QH14uy0p-sd0uEY6dMqpxHTMlOcMOyPVPkpLuO8BcbP5KPpXcQvr_OC_Lm5_n11lz38ur2_unzIVMkhZU1bqo5pBCOBa12UveRadpUpG4CuafsWKqNlVW5ryVXBZd3Vpm2AYy1lWV6Qb6fc9a6_C8YkRhsVOtdP6JcoCqjqDgpWwSr9cZKq4GMMaISy6f_7KfTWCQZi4y0G8cpbbLwFFGLlvbrrN-452LEPx3d9P08-XCk8Wgwibn0o1DasTQjt7TsJ_wC406Qe |
| CitedBy_id | crossref_primary_10_1016_j_cie_2023_109325 crossref_primary_10_1109_TASE_2021_3119353 crossref_primary_10_1080_00207543_2019_1624857 crossref_primary_10_1109_ACCESS_2019_2895348 crossref_primary_10_1016_j_enconman_2019_112017 crossref_primary_10_1016_j_jclepro_2021_129248 crossref_primary_10_1016_j_asoc_2024_111254 crossref_primary_10_1007_s12293_019_00283_4 crossref_primary_10_1007_s00521_020_05075_3 crossref_primary_10_1016_j_aei_2023_102233 crossref_primary_10_1016_j_swevo_2020_100660 crossref_primary_10_1109_TCYB_2019_2908485 crossref_primary_10_3233_JIFS_236874 crossref_primary_10_1007_s40747_022_00830_6 crossref_primary_10_1093_ijlct_ctab005 crossref_primary_10_1080_00207543_2024_2427344 crossref_primary_10_3390_app11167366 crossref_primary_10_3390_sym14040832 crossref_primary_10_1016_j_engappai_2024_108930 crossref_primary_10_1016_j_eswa_2023_120878 crossref_primary_10_1109_TSMC_2021_3120702 crossref_primary_10_1049_cim2_12120 crossref_primary_10_1109_ACCESS_2019_2904848 crossref_primary_10_3233_JIFS_219045 crossref_primary_10_1007_s40747_021_00400_2 crossref_primary_10_1007_s10878_025_01270_x crossref_primary_10_1016_j_ifacol_2023_10_832 crossref_primary_10_3233_JIFS_224199 crossref_primary_10_1016_j_jclepro_2020_120491 crossref_primary_10_1016_j_eswa_2023_120846 crossref_primary_10_1177_0142331218773506 crossref_primary_10_1016_j_aej_2025_05_071 crossref_primary_10_1016_j_asoc_2019_105492 crossref_primary_10_1016_j_cor_2025_107243 crossref_primary_10_1016_j_swevo_2023_101374 crossref_primary_10_1016_j_ejor_2025_07_055 crossref_primary_10_1109_TETCI_2023_3271331 crossref_primary_10_3390_su132313317 crossref_primary_10_1016_j_cie_2021_107493 crossref_primary_10_1016_j_cie_2024_109995 crossref_primary_10_1111_itor_12662 crossref_primary_10_1016_j_comcom_2021_07_031 crossref_primary_10_3233_JIFS_18883 crossref_primary_10_1007_s00500_018_3351_2 crossref_primary_10_1186_s13662_019_2043_2 crossref_primary_10_1155_2020_9732563 crossref_primary_10_3390_sym15071409 crossref_primary_10_1109_ACCESS_2018_2866133 crossref_primary_10_1016_j_jclepro_2019_06_035 crossref_primary_10_1016_j_eswa_2024_125244 crossref_primary_10_1016_j_engappai_2021_104307 crossref_primary_10_1109_TSMC_2022_3219380 crossref_primary_10_1016_j_swevo_2021_100985 crossref_primary_10_1080_0305215X_2024_2420738 crossref_primary_10_1109_TASE_2024_3369019 crossref_primary_10_1016_j_cor_2025_107027 crossref_primary_10_1155_2020_3516149 crossref_primary_10_1080_00207543_2019_1630777 crossref_primary_10_1109_ACCESS_2020_2982570 crossref_primary_10_1109_ACCESS_2018_2889373 crossref_primary_10_1016_j_cie_2021_107456 crossref_primary_10_1051_e3sconf_202017001006 crossref_primary_10_1109_ACCESS_2021_3071729 crossref_primary_10_1016_j_asoc_2018_11_043 crossref_primary_10_3390_s19245542 crossref_primary_10_1088_1742_6596_1569_2_022094 crossref_primary_10_1155_2020_3450180 crossref_primary_10_1109_ACCESS_2020_2999680 crossref_primary_10_1016_j_jclepro_2018_11_231 crossref_primary_10_1109_ACCESS_2018_2849754 crossref_primary_10_3390_su16031114 crossref_primary_10_1007_s12293_018_00278_7 crossref_primary_10_1049_cim2_12025 crossref_primary_10_1016_j_swevo_2019_100578 crossref_primary_10_1016_j_cie_2021_107460 crossref_primary_10_1016_j_jmsy_2024_02_010 crossref_primary_10_1016_j_asoc_2022_108459 crossref_primary_10_1080_00207543_2018_1518603 crossref_primary_10_1088_1742_6596_1757_1_012132 crossref_primary_10_3390_pr13030728 crossref_primary_10_1080_00207543_2018_1501166 crossref_primary_10_1080_00207543_2022_2093680 crossref_primary_10_1080_09540091_2019_1609419 crossref_primary_10_3390_app12136456 crossref_primary_10_1016_j_knosys_2018_11_021 crossref_primary_10_1007_s40747_019_00122_6 crossref_primary_10_1109_ACCESS_2019_2917273 crossref_primary_10_1016_j_swevo_2018_12_001 crossref_primary_10_1007_s11573_020_00971_5 crossref_primary_10_1007_s11573_020_01000_1 crossref_primary_10_1109_ACCESS_2018_2849731 crossref_primary_10_1016_j_jclepro_2022_133851 crossref_primary_10_1007_s10951_025_00849_w crossref_primary_10_1016_j_knosys_2018_08_030 crossref_primary_10_3390_app12031491 crossref_primary_10_1016_j_fuel_2020_119678 crossref_primary_10_1016_j_engappai_2019_01_013 crossref_primary_10_1109_ACCESS_2022_3212081 crossref_primary_10_1002_int_22158 crossref_primary_10_1002_int_22159 crossref_primary_10_3390_math6110220 crossref_primary_10_1016_j_aei_2021_101306 crossref_primary_10_1155_2022_2529805 crossref_primary_10_1016_j_cor_2020_105044 crossref_primary_10_1080_0952813X_2019_1673488 crossref_primary_10_1108_MD_09_2019_1239 crossref_primary_10_1109_TEVC_2021_3106168 crossref_primary_10_3390_su12104110 crossref_primary_10_1016_j_jclepro_2018_11_021 crossref_primary_10_1016_j_swevo_2024_101479 crossref_primary_10_1109_ACCESS_2019_2908227 crossref_primary_10_1007_s10878_023_01055_0 crossref_primary_10_1016_j_jclepro_2018_11_261 crossref_primary_10_1109_TSMC_2019_2907575 crossref_primary_10_1016_j_jmsy_2025_07_003 crossref_primary_10_1080_02522667_2021_1960544 crossref_primary_10_1108_GS_09_2020_0123 crossref_primary_10_3390_sym15112005 crossref_primary_10_1007_s10586_025_05513_8 crossref_primary_10_1109_ACCESS_2018_2873401 crossref_primary_10_3390_sym13122421 crossref_primary_10_1016_j_cor_2023_106521 crossref_primary_10_1007_s11573_023_01151_x crossref_primary_10_1109_TCYB_2021_3069184 crossref_primary_10_1109_ACCESS_2018_2868971 crossref_primary_10_3390_en12204000 crossref_primary_10_1016_j_asoc_2021_107526 crossref_primary_10_1109_ACCESS_2023_3269293 crossref_primary_10_1016_j_autcon_2021_103581 crossref_primary_10_3390_su11113085 crossref_primary_10_1016_j_jclepro_2020_123364 crossref_primary_10_1016_j_engappai_2024_108572 crossref_primary_10_1155_2019_8683472 crossref_primary_10_1016_j_cie_2020_106942 crossref_primary_10_1155_2024_2122895 crossref_primary_10_1145_3674152 crossref_primary_10_1016_j_asoc_2018_10_039 crossref_primary_10_1080_0305215X_2018_1564918 crossref_primary_10_1080_00207543_2018_1504251 crossref_primary_10_3390_w11102147 crossref_primary_10_1007_s10479_023_05592_z crossref_primary_10_1016_j_apenergy_2023_120794 crossref_primary_10_3390_en15051626 crossref_primary_10_1016_j_swevo_2018_11_009 crossref_primary_10_3233_JIFS_210198 crossref_primary_10_1080_0951192X_2022_2025618 crossref_primary_10_1109_ACCESS_2019_2908934 crossref_primary_10_1080_01605682_2019_1630327 crossref_primary_10_1109_ACCESS_2024_3494767 crossref_primary_10_3390_coatings14030368 crossref_primary_10_1016_j_physa_2018_11_018 crossref_primary_10_1016_j_ejor_2022_09_034 crossref_primary_10_1007_s12065_021_00582_1 crossref_primary_10_1109_ACCESS_2019_2924998 crossref_primary_10_1016_j_eswa_2022_117256 crossref_primary_10_1016_j_cie_2025_111050 crossref_primary_10_1080_00207543_2019_1642529 crossref_primary_10_1109_ACCESS_2018_2879600 crossref_primary_10_1016_j_swevo_2019_05_006 crossref_primary_10_1109_TSMC_2019_2916088 crossref_primary_10_1080_00207543_2024_2333943 crossref_primary_10_1016_j_cie_2022_108200 crossref_primary_10_1109_TASE_2020_2969469 crossref_primary_10_1016_j_cie_2021_107738 crossref_primary_10_1016_j_energy_2019_07_066 crossref_primary_10_1016_j_jclepro_2022_135738 crossref_primary_10_1016_j_matcom_2018_04_013 crossref_primary_10_1109_TCYB_2020_3025662 crossref_primary_10_1007_s12652_021_03330_6 crossref_primary_10_1109_TCYB_2019_2943606 crossref_primary_10_1016_j_swevo_2019_01_002 crossref_primary_10_1109_ACCESS_2018_2840512 crossref_primary_10_1007_s00500_018_3622_y crossref_primary_10_1016_j_cie_2024_110095 crossref_primary_10_32604_cmes_2022_020307 crossref_primary_10_1109_ACCESS_2020_3041369 crossref_primary_10_1016_j_engappai_2023_105977 crossref_primary_10_1007_s40815_019_00783_y crossref_primary_10_1016_j_suscom_2023_100900 crossref_primary_10_1016_j_suscom_2023_100901 crossref_primary_10_1038_s41598_023_33414_6 crossref_primary_10_1016_j_ejor_2022_08_009 crossref_primary_10_1016_j_cie_2020_106347 crossref_primary_10_1016_j_cor_2021_105543 crossref_primary_10_1016_j_cie_2019_07_036 crossref_primary_10_1016_j_jclepro_2019_119734 crossref_primary_10_1109_TEM_2021_3095954 crossref_primary_10_1177_0959651819827705 crossref_primary_10_1016_j_trd_2022_103409 crossref_primary_10_3390_app8091673 crossref_primary_10_3390_math7080688 crossref_primary_10_1016_j_jclepro_2018_09_086 crossref_primary_10_1080_00207543_2019_1571687 crossref_primary_10_1109_ACCESS_2019_2916468 crossref_primary_10_1080_00207543_2019_1636324 crossref_primary_10_1155_2021_8035806 crossref_primary_10_1080_00207160_2019_1566535 crossref_primary_10_1016_j_amc_2020_125533 crossref_primary_10_3390_app8071045 crossref_primary_10_1016_j_cie_2020_106570 crossref_primary_10_1016_j_swevo_2018_10_012 |
| Cites_doi | 10.1016/j.cie.2013.04.007 10.1016/j.ejor.2015.10.007 10.1016/j.cor.2009.11.001 10.1109/TEVC.2007.892759 10.1109/70.282536 10.1016/j.ins.2014.10.009 10.1109/TASE.2015.2425404 10.1016/j.ejor.2009.09.024 10.1080/00207543.2014.910627 10.1016/j.omega.2013.12.004 10.1007/s10845-014-0874-y 10.1109/TCYB.2015.2444383 10.1016/j.compind.2015.10.001 10.1016/0305-0483(83)90088-9 10.1016/j.asoc.2014.07.005 10.1109/TEVC.2013.2281535 10.1016/j.asoc.2013.03.006 10.1080/0951192X.2014.880803 10.1016/j.cor.2015.05.010 10.1016/S0377-2217(97)00333-0 10.1016/j.ijpe.2016.06.005 10.1016/j.apm.2013.07.038 10.1016/S0377-2217(98)00060-5 10.1016/j.ejor.2015.07.017 10.1016/j.jclepro.2016.03.150 10.1051/ro:2000103 10.1016/j.rcim.2013.04.001 10.1109/TEVC.2014.2339823 10.1016/j.cie.2016.05.006 10.1007/s10951-005-1640-y 10.1016/j.asoc.2012.01.011 10.1016/j.ejor.2015.05.019 10.1057/jors.1988.63 10.1016/j.cie.2015.06.002 10.1080/0952813X.2012.682752 10.1109/TEVC.2013.2240304 10.1109/TEVC.2014.2373386 10.1016/j.ins.2009.12.025 10.1109/4235.996017 10.1016/j.jclepro.2017.01.011 10.1080/00207721.2014.886742 10.1016/S0925-5273(03)00011-2 10.1016/j.ijpe.2013.01.028 10.1016/j.cirp.2014.03.011 10.1016/j.asoc.2010.12.006 10.1016/j.jclepro.2015.09.097 10.1109/TASE.2015.2495328 10.1080/00207543.2013.847983 10.1016/j.automatica.2015.09.013 10.1016/j.cor.2008.10.008 10.1080/0305215X.2012.685072 10.1016/j.asoc.2014.02.005 10.1016/j.ijpe.2012.05.015 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2018.02.004 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| EndPage | 598 |
| ExternalDocumentID | 10_1016_j_jclepro_2018_02_004 S0959652618303081 |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c390t-673c81de0fb09dd23ab9db84f3600867a704fdb43b9dbb9c29b585f7609e5bb33 |
| ISICitedReferencesCount | 235 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428483100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Thu Oct 02 05:56:36 EDT 2025 Tue Nov 18 21:00:00 EST 2025 Sat Nov 29 07:07:47 EST 2025 Fri Feb 23 02:44:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Hybrid flow shop scheduling problem Energy-aware Setup energy consumption |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c390t-673c81de0fb09dd23ab9db84f3600867a704fdb43b9dbb9c29b585f7609e5bb33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2045802140 |
| PQPubID | 24069 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2045802140 crossref_citationtrail_10_1016_j_jclepro_2018_02_004 crossref_primary_10_1016_j_jclepro_2018_02_004 elsevier_sciencedirect_doi_10_1016_j_jclepro_2018_02_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-20 |
| PublicationDateYYYYMMDD | 2018-04-20 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tran, Ng (bib49) 2013; 45 Wang, Liu (bib50) 2014; 52 Li, Pan, Tasgetiren (bib22) 2014; 38 Che, Zeng, Lyu (bib5) 2016; 129 Li, Meng, Liang, Zhao (bib23) 2015; 26 Zhang, Li (bib54) 2007; 11 Chou (bib6) 2013; 141 Gahm, Denz, Dirr, Tuma (bib15) 2016; 248 Lin, Liao (bib28) 2003; 86 Lei, Guo (bib19) 2016; 65 Li, Pan, Mao (bib26) 2016; 13 Dai, Tang, Giret, Salido, Li (bib8) 2013; 29 Marichelvam, Prabaharan, Yang (bib32) 2014; 18 Carlier, Néron (bib3) 2000; 34 Luo, Du, Huang, Chen, Li (bib30) 2013; 146 Portmann, Vignier, Dardilhac, Dezalay (bib41) 1998; 107 Tang, Dai, Salido, Giret (bib48) 2016; 81 Fu, Faust, Chachuat, Mitsos (bib14) 2015; 62 Pan, Tasgetiren, Suganthan, Chua (bib39) 2011; 181 Oĝuz, Ercan (bib36) 2005; 8 Engin, Ceran, Yilmaz (bib13) 2011; 11 Ruiz, Vázquez Rodríguez (bib45) 2010; 205 Chung, Liao (bib7) 2013; 13 Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6 Chang, Liao (bib4) 1994; 10 Liao, Tjandradjaja, Chung (bib27) 2012; 12 Ying, Lin, Wan (bib52) 2014; 52 Huang, Yang, Hsu (bib17) 2015; 46 Gupta (bib16) 1988; 39 Deb, Jain (bib9) 2014; 18 Ribas, Leisten, Framiñan (bib44) 2010; 37 Sukkerd, Wuttipornpun (bib47) 2016; 97 Bożejko, Pempera, Smutnicki (bib2) 2013; 65 Nawaz, Enscore, Ham (bib35) 1983; 11 Pan, Wang, Qian (bib38) 2009; 36 Marichelvam, Prabaharan, Yang, Geetha (bib31) 2013; 5 Riane, Artiba, Elmaghraby (bib43) 1998; 109 Zhang, Zhao, Fang, Sutherland (bib55) 2014; 63 Ding, Song, Wu (bib11) 2016; 248 Ding, Song, Zhang, Wu (bib12) 2016; 13 Li, Deb, Zhang, Kwong (bib24) 2015; 19 Lu, Gao, Li, Pan, Wang (bib29) 2017; 144 Qin, Zhang, Song (bib42) 2015 Wang, Wang, Liu, Xu (bib51) 2015; 28 Jiang, Liu, Hao, Qian (bib18) 2015; 87 Shahvari, Logendran (bib46) 2016; 179 Moradinasab, Shafaei, Rabiee, Ramezani (bib34) 2013; 25 Li, Pan (bib20) 2015; 316 Li, Pan, Wang (bib21) 2014; 24 Pan, Wang, Li, Duan (bib40) 2014; 45 Asafuddoula, Ray, Sarker (bib1) 2015; 19 Marichelvam, Prabaharan, Yang (bib33) 2014; 19 Pan (bib37) 2016; 250 Li, Pan, Duan (bib25) 2016; 46 Zhang, Chiong (bib53) 2016; 112 Zhang (10.1016/j.jclepro.2018.02.004_bib53) 2016; 112 Huang (10.1016/j.jclepro.2018.02.004_bib17) 2015; 46 Deb (10.1016/j.jclepro.2018.02.004_bib9) 2014; 18 Dai (10.1016/j.jclepro.2018.02.004_bib8) 2013; 29 Zhang (10.1016/j.jclepro.2018.02.004_bib54) 2007; 11 Ruiz (10.1016/j.jclepro.2018.02.004_bib45) 2010; 205 Che (10.1016/j.jclepro.2018.02.004_bib5) 2016; 129 Moradinasab (10.1016/j.jclepro.2018.02.004_bib34) 2013; 25 Tran (10.1016/j.jclepro.2018.02.004_bib49) 2013; 45 Lin (10.1016/j.jclepro.2018.02.004_bib28) 2003; 86 Ding (10.1016/j.jclepro.2018.02.004_bib11) 2016; 248 Lei (10.1016/j.jclepro.2018.02.004_bib19) 2016; 65 Lu (10.1016/j.jclepro.2018.02.004_bib29) 2017; 144 Gupta (10.1016/j.jclepro.2018.02.004_bib16) 1988; 39 Li (10.1016/j.jclepro.2018.02.004_bib23) 2015; 26 Shahvari (10.1016/j.jclepro.2018.02.004_bib46) 2016; 179 Li (10.1016/j.jclepro.2018.02.004_bib24) 2015; 19 Ribas (10.1016/j.jclepro.2018.02.004_bib44) 2010; 37 Gahm (10.1016/j.jclepro.2018.02.004_bib15) 2016; 248 Liao (10.1016/j.jclepro.2018.02.004_bib27) 2012; 12 Chou (10.1016/j.jclepro.2018.02.004_bib6) 2013; 141 Marichelvam (10.1016/j.jclepro.2018.02.004_bib32) 2014; 18 Luo (10.1016/j.jclepro.2018.02.004_bib30) 2013; 146 Zhang (10.1016/j.jclepro.2018.02.004_bib55) 2014; 63 Engin (10.1016/j.jclepro.2018.02.004_bib13) 2011; 11 Li (10.1016/j.jclepro.2018.02.004_bib22) 2014; 38 Fu (10.1016/j.jclepro.2018.02.004_bib14) 2015; 62 Li (10.1016/j.jclepro.2018.02.004_bib21) 2014; 24 Wang (10.1016/j.jclepro.2018.02.004_bib50) 2014; 52 Marichelvam (10.1016/j.jclepro.2018.02.004_bib31) 2013; 5 Li (10.1016/j.jclepro.2018.02.004_bib20) 2015; 316 Asafuddoula (10.1016/j.jclepro.2018.02.004_bib1) 2015; 19 Li (10.1016/j.jclepro.2018.02.004_bib25) 2016; 46 Deb (10.1016/j.jclepro.2018.02.004_bib10) 2002; 6 Wang (10.1016/j.jclepro.2018.02.004_bib51) 2015; 28 Pan (10.1016/j.jclepro.2018.02.004_bib39) 2011; 181 Riane (10.1016/j.jclepro.2018.02.004_bib43) 1998; 109 Li (10.1016/j.jclepro.2018.02.004_bib26) 2016; 13 Portmann (10.1016/j.jclepro.2018.02.004_bib41) 1998; 107 Bożejko (10.1016/j.jclepro.2018.02.004_bib2) 2013; 65 Sukkerd (10.1016/j.jclepro.2018.02.004_bib47) 2016; 97 Qin (10.1016/j.jclepro.2018.02.004_bib42) 2015 Pan (10.1016/j.jclepro.2018.02.004_bib37) 2016; 250 Carlier (10.1016/j.jclepro.2018.02.004_bib3) 2000; 34 Chang (10.1016/j.jclepro.2018.02.004_bib4) 1994; 10 Ding (10.1016/j.jclepro.2018.02.004_bib12) 2016; 13 Marichelvam (10.1016/j.jclepro.2018.02.004_bib33) 2014; 19 Jiang (10.1016/j.jclepro.2018.02.004_bib18) 2015; 87 Ying (10.1016/j.jclepro.2018.02.004_bib52) 2014; 52 Nawaz (10.1016/j.jclepro.2018.02.004_bib35) 1983; 11 Chung (10.1016/j.jclepro.2018.02.004_bib7) 2013; 13 Oĝuz (10.1016/j.jclepro.2018.02.004_bib36) 2005; 8 Pan (10.1016/j.jclepro.2018.02.004_bib38) 2009; 36 Tang (10.1016/j.jclepro.2018.02.004_bib48) 2016; 81 Pan (10.1016/j.jclepro.2018.02.004_bib40) 2014; 45 |
| References_xml | – volume: 129 start-page: 565 year: 2016 end-page: 577 ident: bib5 article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs publication-title: J. Clean. Prod. – volume: 18 start-page: 301 year: 2014 end-page: 305 ident: bib32 article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib9 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 248 start-page: 744 year: 2016 end-page: 757 ident: bib15 article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework publication-title: Eur. J. Oper. Res. – volume: 38 start-page: 1111 year: 2014 end-page: 1132 ident: bib22 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. – volume: 11 start-page: 3056 year: 2011 end-page: 3065 ident: bib13 article-title: An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems publication-title: Appl. Soft Comput. – volume: 181 start-page: 2455 year: 2011 end-page: 2468 ident: bib39 article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem publication-title: Inf. Sci. – volume: 144 start-page: 228 year: 2017 end-page: 238 ident: bib29 article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm publication-title: J. Clean. Prod. – volume: 19 start-page: 694 year: 2015 end-page: 716 ident: bib24 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 5 start-page: 15 year: 2013 end-page: 29 ident: bib31 article-title: Solving hybrid flow shop scheduling problems using bat algorithm publication-title: Int. J. Logist. Econ. Glob. – volume: 107 start-page: 389 year: 1998 end-page: 400 ident: bib41 article-title: Branch and bound crossed with GA to solve hybrid flowshops publication-title: Eur. J. Oper. Res. – volume: 63 start-page: 37 year: 2014 end-page: 40 ident: bib55 article-title: Energy-conscious flow shop scheduling under time-of-use electricity tariffs publication-title: CIRP Ann. - Manuf. Technol. – volume: 109 start-page: 321 year: 1998 end-page: 329 ident: bib43 article-title: A hybrid three-stage flowshop problem: efficient heuristics to minimize makespan publication-title: Eur. J. Oper. Res. – volume: 179 start-page: 239 year: 2016 end-page: 258 ident: bib46 article-title: Hybrid flow shop batching and scheduling with a bi-criteria objective publication-title: Int. J. Prod. Econ. – volume: 10 start-page: 112 year: 1994 end-page: 122 ident: bib4 article-title: Scheduling flexible flow shops with no setup effects publication-title: IEEE Trans. Robot. Autom. – volume: 97 start-page: 157 year: 2016 end-page: 169 ident: bib47 article-title: Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations publication-title: Comput. Ind. Eng. – volume: 65 start-page: 76 year: 2016 end-page: 82 ident: bib19 article-title: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration publication-title: Comput. Oper. Res. – volume: 28 start-page: 307 year: 2015 end-page: 320 ident: bib51 article-title: An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem publication-title: Int. J. Comput. Integrated Manuf. – volume: 316 start-page: 487 year: 2015 end-page: 502 ident: bib20 article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm publication-title: Inf. Sci. – volume: 39 start-page: 359 year: 1988 end-page: 364 ident: bib16 article-title: Two-stage, hybrid flow shop scheduling problem publication-title: J. Oper. Res. Soc. – volume: 12 start-page: 1755 year: 2012 end-page: 1764 ident: bib27 article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. – volume: 81 start-page: 82 year: 2016 end-page: 95 ident: bib48 article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization publication-title: Comput. Ind. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib54 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 87 start-page: 518 year: 2015 end-page: 531 ident: bib18 article-title: A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry publication-title: Comput. Ind. Eng. – volume: 250 start-page: 702 year: 2016 end-page: 714 ident: bib37 article-title: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling publication-title: Eur. J. Oper. Res. – volume: 205 start-page: 1 year: 2010 end-page: 18 ident: bib45 article-title: The hybrid flow shop scheduling problem publication-title: Eur. J. Oper. Res. – volume: 46 start-page: 3010 year: 2015 end-page: 3018 ident: bib17 article-title: Multi-objective two-stage multiprocessor flow shop scheduling–a subgroup particle swarm optimisation approach publication-title: Int. J. Syst. Sci. – volume: 45 start-page: 483 year: 2013 end-page: 502 ident: bib49 article-title: A hybrid water flow algorithm for multi-objective flexible flow shop scheduling problems publication-title: Eng. Optim. – volume: 24 start-page: 63 year: 2014 end-page: 77 ident: bib21 article-title: A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. – volume: 19 start-page: 445 year: 2015 end-page: 460 ident: bib1 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 26 start-page: 873 year: 2015 end-page: 890 ident: bib23 article-title: A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines publication-title: J. Intell. Manuf. – volume: 86 start-page: 133 year: 2003 end-page: 143 ident: bib28 article-title: A case study in a two-stage hybrid flow shop with setup time and dedicated machines publication-title: Int. J. Prod. Econ. – volume: 37 start-page: 1439 year: 2010 end-page: 1454 ident: bib44 article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective publication-title: Comput. Oper. Res. – volume: 13 start-page: 1138 year: 2016 end-page: 1154 ident: bib12 article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 19 start-page: 93 year: 2014 end-page: 101 ident: bib33 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Appl. Soft Comput. – volume: 52 start-page: 5735 year: 2014 end-page: 5747 ident: bib52 article-title: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm publication-title: Int. J. Prod. Res. – volume: 34 start-page: 1 year: 2000 end-page: 25 ident: bib3 article-title: An exact method for solving the multi-processor flow-shop publication-title: Rairo-Oper. Res. – volume: 146 start-page: 423 year: 2013 end-page: 439 ident: bib30 article-title: Hybrid flow shop scheduling considering machine electricity consumption cost publication-title: Int. J. Prod. Econ. – volume: 62 start-page: 184 year: 2015 end-page: 192 ident: bib14 article-title: Local optimization of dynamic programs with guaranteed satisfaction of path constraints publication-title: Automatica – volume: 13 start-page: 3729 year: 2013 end-page: 3736 ident: bib7 article-title: An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem publication-title: Appl. Soft Comput. – volume: 25 start-page: 207 year: 2013 end-page: 225 ident: bib34 article-title: No-wait two stage hybrid flow shop scheduling with genetic and adaptive imperialist competitive algorithms publication-title: J. Exp. Theor. Artif. Intell. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 932 year: 2016 end-page: 949 ident: bib26 article-title: Hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 112 start-page: 3361 year: 2016 end-page: 3375 ident: bib53 article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption publication-title: J. Clean. Prod. – volume: 65 start-page: 466 year: 2013 end-page: 474 ident: bib2 article-title: Parallel tabu search algorithm for the hybrid flow shop problem publication-title: Comput. Ind. Eng. – volume: 11 start-page: 91 year: 1983 end-page: 95 ident: bib35 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega – volume: 36 start-page: 2498 year: 2009 end-page: 2511 ident: bib38 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. – year: 2015 ident: bib42 article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time publication-title: J. Intell. Manuf. – volume: 8 start-page: 323 year: 2005 end-page: 351 ident: bib36 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. – volume: 248 start-page: 758 year: 2016 end-page: 771 ident: bib11 article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization publication-title: Eur. J. Oper. Res. – volume: 141 start-page: 137 year: 2013 end-page: 145 ident: bib6 article-title: Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks publication-title: Int. J. Prod. Econ. – volume: 29 start-page: 418 year: 2013 end-page: 429 ident: bib8 article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm publication-title: Robot. Cim-Int. Manuf – volume: 45 start-page: 42 year: 2014 end-page: 56 ident: bib40 article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation publication-title: Omega-Int. J. Manage. S. – volume: 52 start-page: 1495 year: 2014 end-page: 1508 ident: bib50 article-title: Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method publication-title: Int. J. Prod. Res. – volume: 46 start-page: 1311 year: 2016 end-page: 1324 ident: bib25 article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping publication-title: IEEE. T. Cyber. – volume: 65 start-page: 466 issue: 3 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib2 article-title: Parallel tabu search algorithm for the hybrid flow shop problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2013.04.007 – volume: 250 start-page: 702 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib37 article-title: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.10.007 – volume: 37 start-page: 1439 issue: 8 year: 2010 ident: 10.1016/j.jclepro.2018.02.004_bib44 article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.11.001 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.jclepro.2018.02.004_bib54 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 10 start-page: 112 issue: 2 year: 1994 ident: 10.1016/j.jclepro.2018.02.004_bib4 article-title: Scheduling flexible flow shops with no setup effects publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.282536 – volume: 316 start-page: 487 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib20 article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.10.009 – volume: 13 start-page: 932 issue: 2 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib26 article-title: Hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2425404 – volume: 205 start-page: 1 year: 2010 ident: 10.1016/j.jclepro.2018.02.004_bib45 article-title: The hybrid flow shop scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.09.024 – volume: 52 start-page: 5735 issue: 19 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib52 article-title: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2014.910627 – volume: 45 start-page: 42 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib40 article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation publication-title: Omega-Int. J. Manage. S. doi: 10.1016/j.omega.2013.12.004 – volume: 26 start-page: 873 issue: 5 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib23 article-title: A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0874-y – volume: 46 start-page: 1311 issue: 6 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib25 article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping publication-title: IEEE. T. Cyber. doi: 10.1109/TCYB.2015.2444383 – volume: 5 start-page: 15 issue: 1 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib31 article-title: Solving hybrid flow shop scheduling problems using bat algorithm publication-title: Int. J. Logist. Econ. Glob. – volume: 81 start-page: 82 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib48 article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization publication-title: Comput. Ind. doi: 10.1016/j.compind.2015.10.001 – volume: 11 start-page: 91 issue: 1 year: 1983 ident: 10.1016/j.jclepro.2018.02.004_bib35 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega doi: 10.1016/0305-0483(83)90088-9 – volume: 24 start-page: 63 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib21 article-title: A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.07.005 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib9 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 13 start-page: 3729 issue: 8 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib7 article-title: An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.03.006 – volume: 28 start-page: 307 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib51 article-title: An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem publication-title: Int. J. Comput. Integrated Manuf. doi: 10.1080/0951192X.2014.880803 – volume: 65 start-page: 76 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib19 article-title: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.05.010 – volume: 107 start-page: 389 issue: 2 year: 1998 ident: 10.1016/j.jclepro.2018.02.004_bib41 article-title: Branch and bound crossed with GA to solve hybrid flowshops publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(97)00333-0 – volume: 179 start-page: 239 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib46 article-title: Hybrid flow shop batching and scheduling with a bi-criteria objective publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.06.005 – volume: 38 start-page: 1111 issue: 3 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib22 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.07.038 – volume: 109 start-page: 321 issue: 2 year: 1998 ident: 10.1016/j.jclepro.2018.02.004_bib43 article-title: A hybrid three-stage flowshop problem: efficient heuristics to minimize makespan publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(98)00060-5 – volume: 248 start-page: 744 issue: 3 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib15 article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.07.017 – volume: 129 start-page: 565 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib5 article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.03.150 – volume: 34 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.jclepro.2018.02.004_bib3 article-title: An exact method for solving the multi-processor flow-shop publication-title: Rairo-Oper. Res. doi: 10.1051/ro:2000103 – volume: 29 start-page: 418 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib8 article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm publication-title: Robot. Cim-Int. Manuf doi: 10.1016/j.rcim.2013.04.001 – volume: 19 start-page: 445 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib1 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2339823 – volume: 97 start-page: 157 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib47 article-title: Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.05.006 – volume: 8 start-page: 323 issue: 4 year: 2005 ident: 10.1016/j.jclepro.2018.02.004_bib36 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. doi: 10.1007/s10951-005-1640-y – volume: 12 start-page: 1755 issue: 6 year: 2012 ident: 10.1016/j.jclepro.2018.02.004_bib27 article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.01.011 – volume: 248 start-page: 758 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib11 article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.05.019 – volume: 39 start-page: 359 year: 1988 ident: 10.1016/j.jclepro.2018.02.004_bib16 article-title: Two-stage, hybrid flow shop scheduling problem publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1988.63 – volume: 87 start-page: 518 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib18 article-title: A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.06.002 – volume: 25 start-page: 207 issue: 2 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib34 article-title: No-wait two stage hybrid flow shop scheduling with genetic and adaptive imperialist competitive algorithms publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2012.682752 – volume: 18 start-page: 301 issue: 2 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib32 article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2240304 – volume: 19 start-page: 694 issue: 5 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib24 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 181 start-page: 2455 year: 2011 ident: 10.1016/j.jclepro.2018.02.004_bib39 article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.025 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.jclepro.2018.02.004_bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 144 start-page: 228 year: 2017 ident: 10.1016/j.jclepro.2018.02.004_bib29 article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.011 – volume: 46 start-page: 3010 issue: 16 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib17 article-title: Multi-objective two-stage multiprocessor flow shop scheduling–a subgroup particle swarm optimisation approach publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2014.886742 – volume: 86 start-page: 133 issue: 2 year: 2003 ident: 10.1016/j.jclepro.2018.02.004_bib28 article-title: A case study in a two-stage hybrid flow shop with setup time and dedicated machines publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(03)00011-2 – volume: 146 start-page: 423 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib30 article-title: Hybrid flow shop scheduling considering machine electricity consumption cost publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2013.01.028 – year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib42 article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time publication-title: J. Intell. Manuf. – volume: 63 start-page: 37 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib55 article-title: Energy-conscious flow shop scheduling under time-of-use electricity tariffs publication-title: CIRP Ann. - Manuf. Technol. doi: 10.1016/j.cirp.2014.03.011 – volume: 11 start-page: 3056 issue: 3 year: 2011 ident: 10.1016/j.jclepro.2018.02.004_bib13 article-title: An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.12.006 – volume: 112 start-page: 3361 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib53 article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.09.097 – volume: 13 start-page: 1138 year: 2016 ident: 10.1016/j.jclepro.2018.02.004_bib12 article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2495328 – volume: 52 start-page: 1495 issue: 5 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib50 article-title: Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2013.847983 – volume: 62 start-page: 184 year: 2015 ident: 10.1016/j.jclepro.2018.02.004_bib14 article-title: Local optimization of dynamic programs with guaranteed satisfaction of path constraints publication-title: Automatica doi: 10.1016/j.automatica.2015.09.013 – volume: 36 start-page: 2498 year: 2009 ident: 10.1016/j.jclepro.2018.02.004_bib38 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.10.008 – volume: 45 start-page: 483 issue: 4 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib49 article-title: A hybrid water flow algorithm for multi-objective flexible flow shop scheduling problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.685072 – volume: 19 start-page: 93 year: 2014 ident: 10.1016/j.jclepro.2018.02.004_bib33 article-title: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.005 – volume: 141 start-page: 137 issue: 1 year: 2013 ident: 10.1016/j.jclepro.2018.02.004_bib6 article-title: Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2012.05.015 |
| SSID | ssj0017074 |
| Score | 2.6386797 |
| Snippet | This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 584 |
| SubjectTerms | algorithms energy Energy-aware Hybrid flow shop scheduling problem Multi-objective optimization Setup energy consumption |
| Title | Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions |
| URI | https://dx.doi.org/10.1016/j.jclepro.2018.02.004 https://www.proquest.com/docview/2045802140 |
| Volume | 181 |
| WOSCitedRecordID | wos000428483100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc4IJ5ieclI3KIsbt4-rlZFBaEVhwXKybLz6EPdJNumS_cn8S-ZiZ2HusCyBy5RZSVTO_NlPB77myHkbRI4qfRkZEtfcdtLA8fmqR_bypHgYCQwydX8iq-fwtPTaDrlnweDnw0X5nIV5nm02_Hyv6oa2kDZSJ29hbpbodAAv0HpcAW1w_WfFD-uk0LgFn99WNAu1FIbNasA83BueJeWXM2K9aKan9cHDedXyNyyslXxw9rMi9KCRS9MQoarXtecMTy4TVptSyvVlMG4JnCWXdDvupsLvZNwM0pJdKba9gzQQtNCcvuimT8x1GMC2JMin9lXHXYnOlL7fdtv_GZuPgEhM2mEmBjGKMLtGIftBSMDX3PnO7s86llWX1eSM5O0r0tXX7P_OhSxPFrC4GBceHQv0jlZvW7Cazb59-bB9nRic_BtKYwYgWIEc0SdefbACeHvh-Tg-MN4-rHdsgqZTvndDKWji737bX_-5AjtuQS1n3P2gNw3mqPHGlgPySDNH5F7vbSVj8muhRjdgxjtQ4y2EKMAMaohRhFiFCFGO4jRBmIUIUZriFENMdqH2BPy5f347GRimwoeduxyViGvJIYFUcoyxXiSOK5UPFGRl7kBrqVDGTIvS5TnYrPiscMVLF-zMGBgMJRy3adkmBd5-ozQKJNJEINDnKkR7j1z5YK37mE6xyzkcXhIvOZ1itikt8cqKyvxV3UekqP2sVLnd7npgajRlTBOqnY-BWDwpkffNLoVYMRxZw4-wGK7EVgTIsLshez5bfvzgtztvqiXZFitt-krcie-rBab9WsD0l8K-MpL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multi-objective+optimization+algorithm+for+hybrid+flow+shop+scheduling+problems+with+setup+energy+consumptions&rft.jtitle=Journal+of+cleaner+production&rft.au=Li%2C+Jun-qing&rft.au=Sang%2C+Hong-yan&rft.au=Han%2C+Yu-yan&rft.au=Wang%2C+Cun-gang&rft.date=2018-04-20&rft.issn=0959-6526&rft.volume=181&rft.spage=584&rft.epage=598&rft_id=info:doi/10.1016%2Fj.jclepro.2018.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2018_02_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |