aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture

High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization probl...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization Vol. 65; no. 4
Main Authors: Tran, Anh, Eldred, Mike, Wildey, Tim, McCann, Scott, Sun, Jing, Visintainer, Robert J.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Springer
Subjects:
ISSN:1615-147X, 1615-1488
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means a synchronous p arallel h edge B ayesian o ptimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
AbstractList High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. Firstly, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means a synchronous p arallel h edge B ayesian o ptimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
ArticleNumber 132
Author Sun, Jing
Tran, Anh
Visintainer, Robert J.
McCann, Scott
Wildey, Tim
Eldred, Mike
Author_xml – sequence: 1
  givenname: Anh
  orcidid: 0000-0002-8629-7161
  surname: Tran
  fullname: Tran, Anh
  email: anhtran@sandia.gov
  organization: Optimization and Uncertainty Quantification, Sandia National Laboratories
– sequence: 2
  givenname: Mike
  surname: Eldred
  fullname: Eldred, Mike
  organization: Optimization and Uncertainty Quantification, Sandia National Laboratories
– sequence: 3
  givenname: Tim
  surname: Wildey
  fullname: Wildey, Tim
  organization: Optimization and Uncertainty Quantification, Sandia National Laboratories
– sequence: 4
  givenname: Scott
  surname: McCann
  fullname: McCann, Scott
  organization: Xilinx Inc
– sequence: 5
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: Office of Biostatistics, Office of Translational Sciences, CDER, FDA
– sequence: 6
  givenname: Robert J.
  surname: Visintainer
  fullname: Visintainer, Robert J.
  organization: GIW Industries Inc
BackLink https://www.osti.gov/servlets/purl/1834333$$D View this record in Osti.gov
BookMark eNp9kc1u1DAUhS1UJNqBF2AVwdrgv3gcdkwFBalSWYDEzrrjOBNXiZ3aziJ9FJ4WZ4JAYlHLks_ifPfH5wpd-OAtQq8peUcJ2b9PhNBaYcIoJpwShpdn6JJKWmMqlLr4q_c_X6CrlO4JIYqI5hL9gqk_3GF28w3zw4cKquPcnmy2bQVp8aaPwYc5VRNEGAY7VOM8ZIfBPMwuueyCr7rZm1WkqguxMkXkCM6XCgdYbHLgqzBlN7pHOPvL7d2px5ONBRidPxVonOa8Koimd9maPEf7Ej3vYEj21Z93h358_vT9-gu-vbv5ev3xFhvekIyZabmAulXHupWyFXs4KgDGGKeGCCE6wS1rGjhKBlZx1XJrGtPZTkpRUwJ8h95sdUPKTiez9u_LHr6MoanigpezQ2830xTDw2xT1vdhjr7MpZkUklApZVNcanOZGFKKttOl2nnt9U8GTYle49JbXLrEpc9x6aWg7D90im6EuDwN8Q1KxexPNv6b6gnqN4NPrh0
CitedBy_id crossref_primary_10_1007_s40192_024_00360_8
crossref_primary_10_1016_j_actamat_2023_118922
crossref_primary_10_1038_s41524_025_01528_2
crossref_primary_10_1007_s00158_025_03987_z
crossref_primary_10_1007_s00158_024_03746_6
crossref_primary_10_1007_s00466_023_02308_9
crossref_primary_10_1016_j_commatsci_2024_112845
crossref_primary_10_1038_s41524_024_01274_x
crossref_primary_10_1016_j_aei_2024_102704
crossref_primary_10_1016_j_cma_2025_118066
crossref_primary_10_3389_fmats_2022_915254
Cites_doi 10.4310/SII.2009.v2.n3.a8
10.1109/TDMR.2017.2738625
10.1115/1.4037459
10.1007/978-3-319-27926-8_4
10.1080/00401706.2015.1014065
10.1109/JPROC.2015.2494218
10.1115/1.4044257
10.1109/ICDM.2016.0144
10.1017/CBO9780511546921
10.1038/nature14539
10.2514/6.1992-439
10.1007/s00158-017-1783-4
10.1007/978-3-642-40988-2_15
10.1109/ECTC.2018.00353
10.1007/978-3-319-69404-7_13
10.1115/DETC2019-97986
10.1007/s10898-020-00920-0
10.1007/s00158-018-2182-1
10.15607/RSS.2014.X.031
10.2172/1784843
10.1016/0749-6419(85)90004-X
10.1115/1.0001599V
10.1162/106365601750190398
10.1080/02664763.2017.1390555
10.1287/opre.1090.0754
10.1115/1.4046697
10.2307/2332286
10.1007/978-3-540-28650-9_4
10.1115/1.4049134
10.1080/0305215X.2011.637556
10.1007/978-3-642-44973-4_7
10.1093/acprof:oso/9780199694587.003.0008
10.1007/s00158-011-0745-5
10.1109/MC.2008.209
10.1137/100801275
10.1214/lnms/1215456182
10.1109/TIT.2011.2182033
10.18637/jss.v051.i01
10.1162/106365603321828970
10.1214/18-BA1110
10.1115/1.3653121
10.1023/A:1008306431147
10.1287/ijoc.1080.0314
10.1007/BFb0006170
10.1145/361002.361007
10.7551/mitpress/7496.003.0011
10.1002/nme.5751
10.1007/978-3-642-34413-8_37
10.1016/j.wear.2018.12.081
10.1016/j.advengsoft.2012.03.002
10.1109/5254.708428
10.1109/ECTC.2016.362
10.1115/FEDSM2009-78274
10.1023/A:1010933404324
10.1016/j.cma.2018.12.033
10.1007/978-3-662-38527-2_55
10.1023/A:1018628609742
ContentType Journal Article
Copyright National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
OIOZB
OTOTI
DOI 10.1007/s00158-021-03102-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 1834333
10_1007_s00158_021_03102_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c390t-2cd34a5d8b5d66d47ab8aa22231c0444f43e299ab62ae838d3ec9cfef664510a3
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780850700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Thu Dec 05 06:27:02 EST 2024
Wed Nov 05 01:38:42 EST 2025
Sat Nov 29 02:50:18 EST 2025
Tue Nov 18 22:12:41 EST 2025
Fri Feb 21 02:46:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gaussian process
Constrained
Asynchronous parallel
GP-Hedge
Multi-acquisition
Bayesian optimization
GP-UCB-PE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-2cd34a5d8b5d66d47ab8aa22231c0444f43e299ab62ae838d3ec9cfef664510a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NA0003525
SAND2020-3391J; SAND2021-14006J
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0002-8629-7161
0000000286297161
OpenAccessLink https://www.osti.gov/servlets/purl/1834333
PQID 2646016669
PQPubID 2043658
ParticipantIDs osti_scitechconnect_1834333
proquest_journals_2646016669
crossref_citationtrail_10_1007_s00158_021_03102_y
crossref_primary_10_1007_s00158_021_03102_y
springer_journals_10_1007_s00158_021_03102_y
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – sequence: 0
  name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AzimiJFernAFernXZBatch Bayesian optimization via simulation matchingAdv Neural Inform Process Syst2010231071171365.90176
Hernández-Lobato D, Hernández-Lobato J, Shah A, Adams R (2016) Predictive entropy search for multi-objective Bayesian optimization. In: International Conference on Machine Learning, pp. 1492–1501
AnandLConstitutive equations for hot-working of metalsInt J Plast1985132132310612.73043
Pagalthivarthi KV, Visintainer RJ (2009) Solid-liquid flow-induced erosion prediction in three-dimensional pump casing. In: ASME 2009 fluids engineering division summer meeting, pp. 611–617. American Society of Mechanical Engineers
KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ Basic Eng196486197106
Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J (2018) Deep neural networks as Gaussian processes. In: ICLR
Frazier PI (2018) A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439
GinsbourgerDLe RicheRCarraroLKriging is well-suited to parallelize optimizationComput Intell Expensive Optim Probl20102131162
Marmin S, Chevalier C, Ginsbourger D (2015) Differentiating the multipoint expected improvement for optimal batch design. In: International workshop on machine learning, optimization and big data, pp. 37–48. Springer
Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881
Standard J (2007) Measurement methods of package warpage at elevated temperature and maximum permissive warpage. JEITA 7306, March
ChalupkaKWilliamsCKMurrayIA framework for evaluating approximation methods for Gaussian process regressionJ Mach Learn Res201314Feb33335030333341307.68064
Eriksson D, Pearce M, Gardner J, Turner RD, Poloczek M (2019) Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 5497–5508
Garriga-Alonso A, Rasmussen CE, Aitchison L (2019) Deep convolutional networks as shallow Gaussian processes. In: ICLR
Hernández-Lobato JM, Gelbart MA, Adams RP, Hoffman MW, Ghahramani Z (2016) A general framework for constrained Bayesian optimization using information-based search. J Mach Learn Res
HansenNMüllerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evolut Comput2003111118
TranAWildeyTMcCannSsMF-BO-2CoGP: a sequential multi-fidelity constrained Bayesian optimization for design applicationsJ Comput Inform Sci Eng2020203115
FrazierPPowellWDayanikSThe knowledge-gradient policy for correlated normal beliefsINFORMS J Comput200921459961325883431243.91014
McCann S, Kuramochi S, Yun H, Sundaram V, Pulugurtha MR, Tummala RR, Sitaraman SK (2016) Board-level reliability of 3D through glass via filters during thermal cycling. In: Electronic components and technology conference (ECTC), 2016 IEEE 66th, pp. 1575–1582. IEEE
WhiteFViscous fluid Flow19912New YorkMcGraw-Hill
TranASunJFurlanJMPagalthivarthiKVVisintainerRJWangYpBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamicsComput Methods Appl Mech Eng201934782785239039261440.76130
Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel Gaussian process optimization with upper confidence bound and pure exploration. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 225–240. Springer
AnkenmanBNelsonBLStaumJStochastic kriging for simulation metamodelingOperat Res201058237138226748031342.62134
McCann S, Lee HH, Refai-Ahmed G, Lee T, Ramalingam S (2018) Warpage and reliability challenges for stacked silicon interconnect technology in large packages. In: 2018 IEEE 68th electronic components and technology conference (ECTC), pp. 2345–2350. IEEE
Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In: ICLR
LethamBKarrerBOttoniGBakshyEConstrained Bayesian optimization with noisy experimentsBayesian Anal201914249551939340951416.62156
Azimi J, Jalali A, Fern X (2012) Hybrid batch Bayesian optimization. arXiv preprint arXiv:1202.5597
Azimi J, Fern A, Zhang-Fern X, Borradaile G, Heeringa B (2012) Batch active learning via coordinated matching. arXiv preprint arXiv:1206.6458
TranAHeLWangYAn efficient first-principles saddle point searching method based on distributed kriging metamodelsASCE-ASME J Risk Uncertain Eng Syst Part B201841011006
HennigPSchulerCJEntropy search for information-efficient global optimizationJ Mach Learn Res201213Jun1809183729563431432.65073
ParrJKeaneAForresterAIHoldenCInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim20124410114711661250.90089
Alvi AS, Ru B, Calliess J, Roberts SJ, Osborne MA (2019) Asynchronous batch Bayesian optimisation with improved local penalisation. arXiv preprint arXiv:1901.10452
Nguyen V, Rana S, Gupta SK, Li C, Venkatesh S (2016) Budgeted batch Bayesian optimization. In: Data mining (ICDM), 2016 IEEE 16th international conference on, pp. 1107–1112. IEEE
Daxberger EA, Low BKH (2017) Distributed batch Gaussian process optimization. In: International conference on machine learning, pp. 951–960
Hernández-Lobato JM, Gelbart M, Hoffman M, Adams R, Ghahramani Z (2015) Predictive entropy search for Bayesian optimization with unknown constraints. In: international conference on machine learning, pp. 1699–1707
Quiñonero-Candela J, Rasmussen CE, Williams CK (2007) Approximation methods for Gaussian process regression. Large-scale kernel machines pp. 203–224
RasmussenCEGaussian processes in machine learning2006CambridgeMIT Press1177.68165
SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett199993293300
Wang Z, Jegelka S (2017) Max-value entropy search for efficient Bayesian optimization. arXiv preprint arXiv:1703.01968
BreimanLRandom forestsMach Learn20014515321007.68152
Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607
Chevalier C, Ginsbourger D (2013) Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer
SrinivasNKrauseAKakadeSMSeegerMWInformation-theoretic regret bounds for Gaussian process optimization in the bandit settingIEEE Trans Inform Theory20125853250326529525441365.94131
Letham B, Karrer B, Ottoni G, Bakshy E (2017) Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094
HillMDMartyMRAmdahl’s law in the multicore eraComputer20084173338
Standard J (2009) Package warpage measurement of surface-mount integrated circuits at elevated temperature. JESD22-B112 October
Pagalthivarthi KV, Furlan JM, Visintainer RJ (2013) Wear rate prediction in multi-size particulate flow through impellers. In: ASME 2013 fluids engineering division summer meeting. American Society of Mechanical Engineers
Shah A, Ghahramani Z (2015) Parallel predictive entropy search for batch global optimization of expensive objective functions. In: Advances in neural information processing systems, pp. 3330–3338
Kandasamy K, Krishnamurthy A, Schneider J, Poczos B (2017) Asynchronous parallel Bayesian optimisation via Thompson sampling. arXiv preprint arXiv:1705.09236
WilsonJHutterFDeisenrothMMaximizing acquisition functions for Bayesian optimizationAdv Neural Inform Process Syst20183198849895
Marmin S, Chevalier C, Ginsbourger D (2016) Efficient batch-sequential Bayesian optimization with moments of truncated Gaussian vectors. arXiv preprint arXiv:1609.02700
Hernández-Lobato JM, Hoffman MW, Ghahramani Z (2014) Predictive entropy search for efficient global optimization of black-box functions. In: Advances in neural information processing systems, pp. 918–926
BasudharADribuschCLacazeSMissoumSConstrained efficient global optimization with support vector machinesStruct Multidisc Optim20124622012211274.90271
Wu J, Frazier P (2016) The parallel knowledge gradient method for batch Bayesian optimization. In: Advances in neural information processing systems, pp. 3126–3134
Janusevskis J, Le Riche R, Ginsbourger D, Girdziusas R (2012) Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and intelligent optimization, pp. 413–418. Springer
TranAFurlanJMPagalthivarthiKVVisintainerRJWildeyTWangYWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422926
LeCunYBengioYHintonGDeep learningNature20155217553436
AuerPUsing confidence bounds for exploitation-exploration trade-offsJ Mach Learn Res20023Nov39742219840231084.68543
HearstMADumaisSTOsunaEPlattJScholkopfBSupport vector machinesIEEE Intell Syst Appl19981341828
Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. Lecture notes-monograph series pp. 11–25
BostanabadRChanYCWangLZhuPChenWGlobally approximate gaussian processes for big data with application to data-driven metamaterials designJ Mech Des201914111125
Wang Z, Li C, Jegelka S, Kohli P (2017) Batched high-dimensional Bayesian optimization via structural kernel learning. arXiv preprint arXiv:1703.01973
Mockus J (1975) On Bayesian methods for seeking the extremum. In: Optimization techniques IFIP technical conference, pp. 400–404. Springer
van BeekAGhummanUFMunshiJTaoSChienTBalasubramanianGPlumleeMApleyDChenWScalable adaptive batch sampling in simulation-based design with heteroscedastic noiseJ Mech Des2021143319
Daniel C, Viering M, Metz J, Kroemer O, Peters J (2014) Active reward learning. In: Robotics: science and systems
McCannSSatoYOgawaTTummalaRRSitaramanSKUse of birefringence to determine redistribution layer stresses to create desig
3102_CR1
3102_CR79
WR Thompson (3102_CR102) 1933; 25
A Tran (3102_CR105) 2019; 347
3102_CR6
3102_CR7
F Bachoc (3102_CR8) 2020; 78
N Hansen (3102_CR44) 2003; 11
B Letham (3102_CR67) 2019; 14
DR Jones (3102_CR57) 1998; 13
3102_CR70
B Shahriari (3102_CR92) 2016; 104
I Couckuyt (3102_CR23) 2012; 49
3102_CR74
3102_CR72
3102_CR71
3102_CR78
3102_CR77
3102_CR76
3102_CR75
F White (3102_CR113) 1991
L Anand (3102_CR2) 1985; 1
3102_CR80
Y LeCun (3102_CR63) 2015; 521
3102_CR84
3102_CR83
T Hastie (3102_CR46) 2009; 2
3102_CR82
3102_CR89
3102_CR86
3102_CR15
3102_CR19
HJ Kushner (3102_CR62) 1964; 86
P Frazier (3102_CR32) 2009; 21
B Kamiński (3102_CR58) 2018; 45
O Roustant (3102_CR87) 2012; 51
3102_CR91
3102_CR96
3102_CR95
B Ankenman (3102_CR3) 2010; 58
3102_CR94
3102_CR93
3102_CR99
N Srinivas (3102_CR97) 2012; 58
3102_CR98
3102_CR27
3102_CR26
AD Bull (3102_CR16) 2011; 12
3102_CR25
3102_CR24
3102_CR28
D Ginsbourger (3102_CR39) 2010; 2
A Basudhar (3102_CR9) 2012; 46
A Tran (3102_CR103) 2019; 422
3102_CR21
3102_CR20
3102_CR38
3102_CR37
3102_CR36
3102_CR35
T Desautels (3102_CR29) 2014; 15
H Lee (3102_CR64) 2011; 7
JL Bentley (3102_CR11) 1975; 18
RB Gramacy (3102_CR42) 2016; 58
MD Hill (3102_CR53) 2008; 41
P Hennig (3102_CR48) 2012; 13
S McCann (3102_CR73) 2017; 17
R Bostanabad (3102_CR12) 2019; 141
3102_CR30
J Parr (3102_CR81) 2012; 44
3102_CR34
3102_CR33
3102_CR31
N Cesa-Bianchi (3102_CR17) 2006
3102_CR49
K Chalupka (3102_CR18) 2013; 14
A van Beek (3102_CR10) 2021; 143
W Scott (3102_CR90) 2011; 21
I Couckuyt (3102_CR22) 2014; 15
A Tran (3102_CR106) 2019; 59
3102_CR40
3102_CR43
N Hansen (3102_CR45) 2001; 9
3102_CR59
D Gorissen (3102_CR41) 2010; 11
J Wilson (3102_CR114) 2018; 31
J Azimi (3102_CR5) 2010; 23
3102_CR108
L Breiman (3102_CR14) 2001; 45
3102_CR107
3102_CR52
3102_CR51
3102_CR50
3102_CR56
3102_CR55
3102_CR54
3102_CR100
M Sacher (3102_CR88) 2018; 53
3102_CR69
P Auer (3102_CR4) 2002; 3
3102_CR68
Q Zhou (3102_CR116) 2018; 57
CE Rasmussen (3102_CR85) 2006
A Tran (3102_CR109) 2020; 20
A Tran (3102_CR104) 2018; 4
MA Hearst (3102_CR47) 1998; 13
JA Suykens (3102_CR101) 1999; 9
3102_CR112
3102_CR61
3102_CR115
R Bostanabad (3102_CR13) 2018; 114
3102_CR60
3102_CR66
3102_CR65
3102_CR111
3102_CR110
References_xml – reference: Pagalthivarthi KV, Visintainer RJ (2009) Solid-liquid flow-induced erosion prediction in three-dimensional pump casing. In: ASME 2009 fluids engineering division summer meeting, pp. 611–617. American Society of Mechanical Engineers
– reference: ZhouQWangYChoiSKJiangPShaoXHuJShuLA robust optimization approach based on multi-fidelity metamodelStruct Multidisc Optim2018572775797
– reference: TranATranMWangYConstrained mixed-integer Gaussian mixture Bayesian optimization and its applications in designing fractal and auxetic metamaterialsStruct Multidisc Optim2019591243947842
– reference: BostanabadRKearneyTTaoSApleyDWChenWLeveraging the nugget parameter for efficient Gaussian process modelingInt J Numer Methods Eng201811455015163796819
– reference: HansenNMüllerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evolut Comput2003111118
– reference: Srinivas N, Krause A, Kakade SM, Seeger M (2009) Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995
– reference: DesautelsTKrauseABurdickJWParallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimizationJ Mach Learn Res20141513873392333172141312.62036
– reference: Alvi AS, Ru B, Calliess J, Roberts SJ, Osborne MA (2019) Asynchronous batch Bayesian optimisation with improved local penalisation. arXiv preprint arXiv:1901.10452
– reference: Darveaux R (2000) Effect of simulation methodology on solder joint crack growth correlation. In: Electronic Components & Technology Conference, 2000. 2000 Proceedings. 50th, pp. 1048–1058. IEEE
– reference: LethamBKarrerBOttoniGBakshyEConstrained Bayesian optimization with noisy experimentsBayesian Anal201914249551939340951416.62156
– reference: Quiñonero-Candela J, Rasmussen CE, Williams CK (2007) Approximation methods for Gaussian process regression. Large-scale kernel machines pp. 203–224
– reference: Ginsbourger D, Le Riche R, Carraro L (2008) A multi-points criterion for deterministic parallel global optimization based on Gaussian processes
– reference: Hernández-Lobato JM, Gelbart M, Hoffman M, Adams R, Ghahramani Z (2015) Predictive entropy search for Bayesian optimization with unknown constraints. In: international conference on machine learning, pp. 1699–1707
– reference: HillMDMartyMRAmdahl’s law in the multicore eraComputer20084173338
– reference: HastieTRossetSZhuJZouHMulti-class AdaBoostStat Its Interface20092334936025400921245.62080
– reference: Shah A, Ghahramani Z (2015) Parallel predictive entropy search for batch global optimization of expensive objective functions. In: Advances in neural information processing systems, pp. 3330–3338
– reference: Tran A, Wang Y, Furlan J, Pagalthivarthi KV, Garman M, Cutright A, Visintainer RJ (2020a) WearGP: A UQ/ML wear prediction framework for slurry pump impellers and casings. In: ASME 2020 fluids engineering division summer meeting. American Society of Mechanical Engineers
– reference: Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881
– reference: FrazierPPowellWDayanikSThe knowledge-gradient policy for correlated normal beliefsINFORMS J Comput200921459961325883431243.91014
– reference: GramacyRBGrayGALe DigabelSLeeHKRanjanPWellsGWildSMModeling an augmented Lagrangian for blackbox constrained optimizationTechnometrics20165811113463148
– reference: McCann S, Kuramochi S, Yun H, Sundaram V, Pulugurtha MR, Tummala RR, Sitaraman SK (2016) Board-level reliability of 3D through glass via filters during thermal cycling. In: Electronic components and technology conference (ECTC), 2016 IEEE 66th, pp. 1575–1582. IEEE
– reference: McCann S, Lee HH, Refai-Ahmed G, Lee T, Ramalingam S (2018) Warpage and reliability challenges for stacked silicon interconnect technology in large packages. In: 2018 IEEE 68th electronic components and technology conference (ECTC), pp. 2345–2350. IEEE
– reference: HennigPSchulerCJEntropy search for information-efficient global optimizationJ Mach Learn Res201213Jun1809183729563431432.65073
– reference: Wang J, Clark SC, Liu E, Frazier PI (2016) Parallel Bayesian global optimization of expensive functions. arXiv preprint arXiv:1602.05149
– reference: Wang Z, Jegelka S (2017) Max-value entropy search for efficient Bayesian optimization. arXiv preprint arXiv:1703.01968
– reference: Daniel C, Viering M, Metz J, Kroemer O, Peters J (2014) Active reward learning. In: Robotics: science and systems
– reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Global Optim199813445549216734600917.90270
– reference: BasudharADribuschCLacazeSMissoumSConstrained efficient global optimization with support vector machinesStruct Multidisc Optim20124622012211274.90271
– reference: ChalupkaKWilliamsCKMurrayIA framework for evaluating approximation methods for Gaussian process regressionJ Mach Learn Res201314Feb33335030333341307.68064
– reference: ScottWFrazierPPowellWThe correlated knowledge gradient for simulation optimization of continuous parameters using Gaussian process regressionSIAM J Optim2011213996102628375611229.62018
– reference: BostanabadRChanYCWangLZhuPChenWGlobally approximate gaussian processes for big data with application to data-driven metamaterials designJ Mech Des201914111125
– reference: Surjanovic S, Bingham D Virtual library of simulation experiments: test functions and datasets. https://www.sfu.ca/ssurjano/optimization.html
– reference: RoustantOGinsbourgerDDevilleYDiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimizationJ Stat Softw201251154p
– reference: Kotthaus H, Richter J, Lang A, Thomas J, Bischl B, Marwedel P, Rahnenführer J, Lang M (2017) RAMBO: Resource-aware model-based optimization with scheduling for heterogeneous runtimes and a comparison with asynchronous model-based optimization. In: International conference on learning and intelligent optimization, pp. 180–195. Springer
– reference: Nguyen V, Rana S, Gupta SK, Li C, Venkatesh S (2016) Budgeted batch Bayesian optimization. In: Data mining (ICDM), 2016 IEEE 16th international conference on, pp. 1107–1112. IEEE
– reference: Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In: ICLR
– reference: Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607
– reference: SacherMDuvigneauRLe MaîtreODurandMBerriniÉHauvilleFAstolfiJAA classification approach to efficient global optimization in presence of non-computable domainsStruct Multidisc Optim2018531213851801
– reference: Mockus J (1982) The Bayesian approach to global optimization. Syst Model Optim pp. 473–481
– reference: SrinivasNKrauseAKakadeSMSeegerMWInformation-theoretic regret bounds for Gaussian process optimization in the bandit settingIEEE Trans Inform Theory20125853250326529525441365.94131
– reference: Hernández-Lobato D, Hernández-Lobato J, Shah A, Adams R (2016) Predictive entropy search for multi-objective Bayesian optimization. In: International Conference on Machine Learning, pp. 1492–1501
– reference: Daxberger EA, Low BKH (2017) Distributed batch Gaussian process optimization. In: International conference on machine learning, pp. 951–960
– reference: TranAHeLWangYAn efficient first-principles saddle point searching method based on distributed kriging metamodelsASCE-ASME J Risk Uncertain Eng Syst Part B201841011006
– reference: KamińskiBSzufelPOn parallel policies for ranking and selection problemsJ Appl Stat201845916901713380034007479870
– reference: BachocFHelbertCPichenyVGaussian process optimization with failures: classification and convergence proofJ Global Optim202078348350641619241472.60062
– reference: Standard J (2009) Package warpage measurement of surface-mount integrated circuits at elevated temperature. JESD22-B112 October
– reference: BullADConvergence rates of efficient global optimization algorithmsJ Mach Learn Res201112Oct2879290428543511280.90094
– reference: Garriga-Alonso A, Rasmussen CE, Aitchison L (2019) Deep convolutional networks as shallow Gaussian processes. In: ICLR
– reference: Ginsbourger D, Janusevskis J, Le Riche R (2011) Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing & statistics (ERCIM’11)
– reference: Wang Z, Li C, Jegelka S, Kohli P (2017) Batched high-dimensional Bayesian optimization via structural kernel learning. arXiv preprint arXiv:1703.01973
– reference: WilsonJHutterFDeisenrothMMaximizing acquisition functions for Bayesian optimizationAdv Neural Inform Process Syst20183198849895
– reference: LeeHGramacyRLinkletterCGrayGOptimization subject to hidden constraints via statistical emulationPac J Optim201173467478288316005964910
– reference: Gardner JR, Kusner MJ, Xu ZE, Weinberger KQ, Cunningham JP (2014) Bayesian optimization with inequality constraints. In: ICML, pp. 937–945
– reference: Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel Gaussian process optimization with upper confidence bound and pure exploration. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 225–240. Springer
– reference: TranAWildeyTMcCannSsMF-BO-2CoGP: a sequential multi-fidelity constrained Bayesian optimization for design applicationsJ Comput Inform Sci Eng2020203115
– reference: AnandLConstitutive equations for hot-working of metalsInt J Plast1985132132310612.73043
– reference: Pokuri BSS, Lofquist A, Risko CM, Ganapathysubramanian B (2018) PARyOpt: A software for parallel asynchronous remote Bayesian optimization. arXiv preprint arXiv:1809.04668
– reference: González J, Dai Z, Hennig P, Lawrence N (2016) Batch Bayesian optimization via local penalization. In: Proceedings of the 19th international conference on artificial intelligence and statistics, pp. 648–657
– reference: SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett199993293300
– reference: GorissenDCouckuytIDemeesterPDhaeneTCrombecqKA surrogate modeling and adaptive sampling toolbox for computer based designJ Mach Learn Res20101120512055
– reference: Pagalthivarthi KV, Furlan JM, Visintainer RJ (2015) Finite element prediction of multi-size particulate flow through three-dimensional pump casing. In: ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, pp. V001T31A002–V001T31A002. American Society of Mechanical Engineers
– reference: HearstMADumaisSTOsunaEPlattJScholkopfBSupport vector machinesIEEE Intell Syst Appl19981341828
– reference: RasmussenCEGaussian processes in machine learning2006CambridgeMIT Press1177.68165
– reference: AuerPUsing confidence bounds for exploitation-exploration trade-offsJ Mach Learn Res20023Nov39742219840231084.68543
– reference: Chevalier C, Ginsbourger D (2013) Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer
– reference: Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp. 2951–2959
– reference: Azimi J, Fern A, Zhang-Fern X, Borradaile G, Heeringa B (2012) Batch active learning via coordinated matching. arXiv preprint arXiv:1206.6458
– reference: AzimiJFernAFernXZBatch Bayesian optimization via simulation matchingAdv Neural Inform Process Syst2010231071171365.90176
– reference: Kathuria T, Deshpande A, Kohli P (2016) Batched Gaussian process bandit optimization via determinantal point processes. In: Adv Neural Inform Process Syst pp. 4206–4214
– reference: Marmin S, Chevalier C, Ginsbourger D (2016) Efficient batch-sequential Bayesian optimization with moments of truncated Gaussian vectors. arXiv preprint arXiv:1609.02700
– reference: Wu J, Frazier P (2016) The parallel knowledge gradient method for batch Bayesian optimization. In: Advances in neural information processing systems, pp. 3126–3134
– reference: Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J (2018) Deep neural networks as Gaussian processes. In: ICLR
– reference: BentleyJLMultidimensional binary search trees used for associative searchingCommun ACM19751895095170306.68061
– reference: Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439
– reference: TranAFurlanJMPagalthivarthiKVVisintainerRJWildeyTWangYWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422926
– reference: Rontsis N, Osborne MA, Goulart PJ (2017) Distributionally robust optimization techniques in batch Bayesian optimization. arXiv preprint arXiv:1707.04191
– reference: BreimanLRandom forestsMach Learn20014515321007.68152
– reference: CouckuytIForresterAGorissenDDe TurckFDhaeneTBlind kriging: implementation and performance analysisAdv Eng Softw201249113
– reference: De Palma A, Mendler-Dünner C, Parnell T, Anghel A, Pozidis H (2019) Sampling acquisition functions for batch Bayesian optimization. arXiv preprint arXiv:1903.09434
– reference: Hernández-Lobato JM, Hoffman MW, Ghahramani Z (2014) Predictive entropy search for efficient global optimization of black-box functions. In: Advances in neural information processing systems, pp. 918–926
– reference: McCannSSatoYOgawaTTummalaRRSitaramanSKUse of birefringence to determine redistribution layer stresses to create design guidelines to prevent glass crackingIEEE Trans Device Mater Reliab2017173585592
– reference: Couckuyt I, Dhaene T, Demeester P (2013) ooDACE toolbox, A Matlab Kriging toolbox: Getting started. Universiteit Gent pp. 3–15
– reference: Azimi J, Jalali A, Fern X (2012) Hybrid batch Bayesian optimization. arXiv preprint arXiv:1202.5597
– reference: Pagalthivarthi KV, Furlan JM, Visintainer RJ (2013) Wear rate prediction in multi-size particulate flow through impellers. In: ASME 2013 fluids engineering division summer meeting. American Society of Mechanical Engineers
– reference: Letham B, Karrer B, Ottoni G, Bakshy E (2017) Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094
– reference: Hoffman M, Brochu E, de Freitas N (2011) Portfolio allocation for bayesian optimization. In: Proceedings of the twenty-seventh conference on uncertainty in artificial intelligence, UAI’11, pp. 327–336. AUAI Press, Arlington
– reference: van BeekAGhummanUFMunshiJTaoSChienTBalasubramanianGPlumleeMApleyDChenWScalable adaptive batch sampling in simulation-based design with heteroscedastic noiseJ Mech Des2021143319
– reference: Frazier PI (2018) A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
– reference: KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ Basic Eng196486197106
– reference: LeCunYBengioYHintonGDeep learningNature20155217553436
– reference: Cesa-BianchiNLugosiGPrediction, learning, and games2006CambridgeCambridge University Press1114.91001
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvolut Comput200192159195
– reference: Maddison CJ, Mnih A, Teh YW (2017) The concrete distribution: A continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712
– reference: ParrJKeaneAForresterAIHoldenCInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim20124410114711661250.90089
– reference: Standard J (2007) Measurement methods of package warpage at elevated temperature and maximum permissive warpage. JEITA 7306, March
– reference: Hernández-Lobato JM, Gelbart MA, Adams RP, Hoffman MW, Ghahramani Z (2016) A general framework for constrained Bayesian optimization using information-based search. J Mach Learn Res
– reference: WhiteFViscous fluid Flow19912New YorkMcGraw-Hill
– reference: ShahriariBSwerskyKWangZAdamsRPde FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc IEEE20161041148175
– reference: TranASunJFurlanJMPagalthivarthiKVVisintainerRJWangYpBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamicsComput Methods Appl Mech Eng201934782785239039261440.76130
– reference: Janusevskis J, Le Riche R, Ginsbourger D, Girdziusas R (2012) Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and intelligent optimization, pp. 413–418. Springer
– reference: CouckuytIDhaeneTDemeesterPooDACE toolbox: a flexible object-oriented Kriging implementationJ Mach Learn Res2014151318331861319.62001
– reference: GinsbourgerDLe RicheRCarraroLKriging is well-suited to parallelize optimizationComput Intell Expensive Optim Probl20102131162
– reference: Mockus J (1975) On Bayesian methods for seeking the extremum. In: Optimization techniques IFIP technical conference, pp. 400–404. Springer
– reference: AnkenmanBNelsonBLStaumJStochastic kriging for simulation metamodelingOperat Res201058237138226748031342.62134
– reference: Eriksson D, Pearce M, Gardner J, Turner RD, Poloczek M (2019) Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 5497–5508
– reference: ThompsonWROn the likelihood that one unknown probability exceeds another in view of the evidence of two samplesBiometrika1933253/428529459.1159.03
– reference: Gramacy RB, Lee HKH (2010) Optimization under unknown constraints. arXiv preprint arXiv:1004.4027
– reference: Shahriari B, Wang Z, Hoffman MW, Bouchard-Côté A, de Freitas N (2014) An entropy search portfolio for Bayesian optimization. arXiv preprint arXiv:1406.4625
– reference: Dalbey K, Eldred M, Geraci G, Jakeman J, Maupin K, Monschke JA, Seidl D, Tran A, Menhorn F, Zeng X (2021) Dakota a multilevel parallel object-oriented framework for design optimization parameter estimation uncertainty quantification and sensitivity analysis: version 6.14 theory manual. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerqu
– reference: Marmin S, Chevalier C, Ginsbourger D (2015) Differentiating the multipoint expected improvement for optimal batch design. In: International workshop on machine learning, optimization and big data, pp. 37–48. Springer
– reference: Rasmussen CE (2004) Gaussian processes in machine learning. In: Advanced lectures on machine learning, pp. 63–71. Springer
– reference: Brochu E, Cora VM, de Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599
– reference: Nielsen HB, Lophaven SN, Søndergaard J (2002) DACE, a MATLAB Kriging toolbox, vol. 2. Citeseer
– reference: Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. Lecture notes-monograph series pp. 11–25
– reference: Tran A, Wildey T, McCann S (2019d) sBF-BO-2CoGP: A sequential bi-fidelity constrained Bayesian optimization for design applications. In: Proceedings of the ASME 2019 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 1: 39th Computers and Information in Engineering Conference. American Society of Mechanical Engineers. V001T02A073
– reference: Kandasamy K, Krishnamurthy A, Schneider J, Poczos B (2017) Asynchronous parallel Bayesian optimisation via Thompson sampling. arXiv preprint arXiv:1705.09236
– ident: 3102_CR21
– volume: 13
  start-page: 1809
  issue: Jun
  year: 2012
  ident: 3102_CR48
  publication-title: J Mach Learn Res
– volume-title: Gaussian processes in machine learning
  year: 2006
  ident: 3102_CR85
– ident: 3102_CR96
– volume: 2
  start-page: 349
  issue: 3
  year: 2009
  ident: 3102_CR46
  publication-title: Stat Its Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– ident: 3102_CR35
– volume: 17
  start-page: 585
  issue: 3
  year: 2017
  ident: 3102_CR73
  publication-title: IEEE Trans Device Mater Reliab
  doi: 10.1109/TDMR.2017.2738625
– volume: 4
  start-page: 011006
  issue: 1
  year: 2018
  ident: 3102_CR104
  publication-title: ASCE-ASME J Risk Uncertain Eng Syst Part B
  doi: 10.1115/1.4037459
– ident: 3102_CR69
  doi: 10.1007/978-3-319-27926-8_4
– ident: 3102_CR1
– ident: 3102_CR50
– volume: 31
  start-page: 9884
  year: 2018
  ident: 3102_CR114
  publication-title: Adv Neural Inform Process Syst
– volume: 58
  start-page: 1
  issue: 1
  year: 2016
  ident: 3102_CR42
  publication-title: Technometrics
  doi: 10.1080/00401706.2015.1014065
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 3102_CR92
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: 3102_CR70
– ident: 3102_CR110
– volume: 141
  start-page: 125
  issue: 11
  year: 2019
  ident: 3102_CR12
  publication-title: J Mech Des
  doi: 10.1115/1.4044257
– ident: 3102_CR76
  doi: 10.1109/ICDM.2016.0144
– volume-title: Prediction, learning, and games
  year: 2006
  ident: 3102_CR17
  doi: 10.1017/CBO9780511546921
– ident: 3102_CR91
– ident: 3102_CR26
– ident: 3102_CR99
– volume: 53
  start-page: 1
  year: 2018
  ident: 3102_CR88
  publication-title: Struct Multidisc Optim
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 3102_CR63
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 3102_CR95
  doi: 10.2514/6.1992-439
– volume: 57
  start-page: 775
  issue: 2
  year: 2018
  ident: 3102_CR116
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-017-1783-4
– volume: 2
  start-page: 131
  year: 2010
  ident: 3102_CR39
  publication-title: Comput Intell Expensive Optim Probl
– ident: 3102_CR78
– ident: 3102_CR15
– ident: 3102_CR20
  doi: 10.1007/978-3-642-40988-2_15
– ident: 3102_CR72
  doi: 10.1109/ECTC.2018.00353
– ident: 3102_CR98
– ident: 3102_CR61
  doi: 10.1007/978-3-319-69404-7_13
– ident: 3102_CR65
– ident: 3102_CR108
  doi: 10.1115/DETC2019-97986
– ident: 3102_CR115
– volume: 15
  start-page: 3183
  issue: 1
  year: 2014
  ident: 3102_CR22
  publication-title: J Mach Learn Res
– volume: 78
  start-page: 483
  issue: 3
  year: 2020
  ident: 3102_CR8
  publication-title: J Global Optim
  doi: 10.1007/s10898-020-00920-0
– volume: 59
  start-page: 1
  year: 2019
  ident: 3102_CR106
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-2182-1
– ident: 3102_CR79
– ident: 3102_CR37
– ident: 3102_CR7
– ident: 3102_CR25
  doi: 10.15607/RSS.2014.X.031
– ident: 3102_CR24
  doi: 10.2172/1784843
– volume-title: Viscous fluid Flow
  year: 1991
  ident: 3102_CR113
– volume: 1
  start-page: 213
  issue: 3
  year: 1985
  ident: 3102_CR2
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(85)90004-X
– ident: 3102_CR112
– ident: 3102_CR93
– ident: 3102_CR107
  doi: 10.1115/1.0001599V
– ident: 3102_CR28
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 3102_CR45
  publication-title: Evolut Comput
  doi: 10.1162/106365601750190398
– volume: 45
  start-page: 1690
  issue: 9
  year: 2018
  ident: 3102_CR58
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2017.1390555
– ident: 3102_CR82
– ident: 3102_CR34
– volume: 12
  start-page: 2879
  issue: Oct
  year: 2011
  ident: 3102_CR16
  publication-title: J Mach Learn Res
– ident: 3102_CR59
– ident: 3102_CR51
– volume: 58
  start-page: 371
  issue: 2
  year: 2010
  ident: 3102_CR3
  publication-title: Operat Res
  doi: 10.1287/opre.1090.0754
– volume: 20
  start-page: 1
  issue: 3
  year: 2020
  ident: 3102_CR109
  publication-title: J Comput Inform Sci Eng
  doi: 10.1115/1.4046697
– volume: 25
  start-page: 285
  issue: 3/4
  year: 1933
  ident: 3102_CR102
  publication-title: Biometrika
  doi: 10.2307/2332286
– ident: 3102_CR84
  doi: 10.1007/978-3-540-28650-9_4
– volume: 143
  start-page: 19
  issue: 3
  year: 2021
  ident: 3102_CR10
  publication-title: J Mech Des
  doi: 10.1115/1.4049134
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  ident: 3102_CR81
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.637556
– ident: 3102_CR40
– ident: 3102_CR19
  doi: 10.1007/978-3-642-44973-4_7
– ident: 3102_CR43
  doi: 10.1093/acprof:oso/9780199694587.003.0008
– volume: 14
  start-page: 333
  issue: Feb
  year: 2013
  ident: 3102_CR18
  publication-title: J Mach Learn Res
– volume: 46
  start-page: 201
  issue: 2
  year: 2012
  ident: 3102_CR9
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0745-5
– ident: 3102_CR60
– volume: 41
  start-page: 33
  issue: 7
  year: 2008
  ident: 3102_CR53
  publication-title: Computer
  doi: 10.1109/MC.2008.209
– ident: 3102_CR77
– ident: 3102_CR100
– volume: 7
  start-page: 467
  issue: 3
  year: 2011
  ident: 3102_CR64
  publication-title: Pac J Optim
– volume: 21
  start-page: 996
  issue: 3
  year: 2011
  ident: 3102_CR90
  publication-title: SIAM J Optim
  doi: 10.1137/100801275
– ident: 3102_CR54
– ident: 3102_CR89
  doi: 10.1214/lnms/1215456182
– volume: 58
  start-page: 3250
  issue: 5
  year: 2012
  ident: 3102_CR97
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.2011.2182033
– ident: 3102_CR31
– volume: 51
  start-page: 54p
  issue: 1
  year: 2012
  ident: 3102_CR87
  publication-title: J Stat Softw
  doi: 10.18637/jss.v051.i01
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 3102_CR44
  publication-title: Evolut Comput
  doi: 10.1162/106365603321828970
– ident: 3102_CR68
– volume: 23
  start-page: 107
  year: 2010
  ident: 3102_CR5
  publication-title: Adv Neural Inform Process Syst
– volume: 14
  start-page: 495
  issue: 2
  year: 2019
  ident: 3102_CR67
  publication-title: Bayesian Anal
  doi: 10.1214/18-BA1110
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  ident: 3102_CR62
  publication-title: J Basic Eng
  doi: 10.1115/1.3653121
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 3102_CR57
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– volume: 21
  start-page: 599
  issue: 4
  year: 2009
  ident: 3102_CR32
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1080.0314
– ident: 3102_CR75
  doi: 10.1007/BFb0006170
– ident: 3102_CR36
– volume: 3
  start-page: 397
  issue: Nov
  year: 2002
  ident: 3102_CR4
  publication-title: J Mach Learn Res
– ident: 3102_CR94
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  ident: 3102_CR11
  publication-title: Commun ACM
  doi: 10.1145/361002.361007
– ident: 3102_CR111
– ident: 3102_CR27
– volume: 15
  start-page: 3873
  issue: 1
  year: 2014
  ident: 3102_CR29
  publication-title: J Mach Learn Res
– ident: 3102_CR83
  doi: 10.7551/mitpress/7496.003.0011
– ident: 3102_CR33
– volume: 114
  start-page: 501
  issue: 5
  year: 2018
  ident: 3102_CR13
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5751
– ident: 3102_CR56
  doi: 10.1007/978-3-642-34413-8_37
– ident: 3102_CR52
– volume: 422
  start-page: 9
  year: 2019
  ident: 3102_CR103
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.081
– volume: 49
  start-page: 1
  year: 2012
  ident: 3102_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.03.002
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 3102_CR47
  publication-title: IEEE Intell Syst Appl
  doi: 10.1109/5254.708428
– ident: 3102_CR49
– ident: 3102_CR66
– ident: 3102_CR71
  doi: 10.1109/ECTC.2016.362
– ident: 3102_CR80
  doi: 10.1115/FEDSM2009-78274
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 3102_CR14
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 3102_CR55
– volume: 347
  start-page: 827
  year: 2019
  ident: 3102_CR105
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.12.033
– ident: 3102_CR74
  doi: 10.1007/978-3-662-38527-2_55
– ident: 3102_CR86
– volume: 11
  start-page: 2051
  year: 2010
  ident: 3102_CR41
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 3102_CR101
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– ident: 3102_CR38
– ident: 3102_CR6
– ident: 3102_CR30
SSID ssj0008049
Score 2.4531605
Snippet High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
asynchronously parallel
Bayesian analysis
Bayesian optimization
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Computer simulation
Computing costs
Constraints
Engineering
Engineering Design
Finite element method
Gaussian process
Industrial applications
known/unknown constrained
Mathematical analysis
MATHEMATICS AND COMPUTING
multi-acquisition
Optimization
Research Paper
Simulation
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKlgMcSnmJpQ_5wA0sSOwkdi-IRX2c2kqAtDdrYju00rLZNrtI-1f4tcw43m2LRC-VcoiUl6MZf_MlnvmGsXeNx2-E4EFIr4xQAJWoS6OEK7xxodGVlk1sNlGdnurx2JynH25dSqtcYWIEat86-kf-EQM3KYeUpfk8uxLUNYpWV1MLjUdsk1QSspi6922NxLqnv0RqRKaqcSqaiaVzRBa0oAQFEsfMxfJOYBq0OMHukM5_1klj-Dl69tCBb7OtRDz5l95TnrONMH3Bnt6SI3zJ_sDsYnQm8uNzIUcHHHi98D-RVHsO3XLqSEa3XXSc1MInkzDhMRlRgLtaXPaZX5yiZHRkjlyYO-Ke1IIC7zCCZaB6Td4iRv1KxZ8cN9JLFrO-fAFHwV1sM0F7t9c4XrEfR4ffv56I1LtBOGk-zUXuvFRQeF0Xviy9qqDWAERGMkcSdY2SASMh1GUOQUvtZXDGNaEpS4UwAfI1G0zbaXjDeAXoQTnSuAa_fWoEaJ-ZosIZAJnTBZghy1aGsy4Jm9PLTexakjka26KxbTS2XQ7Z-_U1s17W496zd8gfLJISUtZ1lILk5hbRUEkph2x3ZXibAKCzN1Yfsg8r17k5_P9nvb3_bjvsSU4FGDF3aJcN5teLsMceu9_zy-56P7r_X7iwDqQ
  priority: 102
  providerName: ProQuest
Title aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture
URI https://link.springer.com/article/10.1007/s00158-021-03102-y
https://www.proquest.com/docview/2646016669
https://www.osti.gov/servlets/purl/1834333
Volume 65
WOSCitedRecordID wos000780850700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB1BlwN74BtRdql84AaWSOwkDjeKduFUql1AvVkT22FXKm3ZtCv1r_BrmXGSsosACaQcIsVJHGc88yzPewPwvPa0RggepfK6lBqxkFVeaukyX7pQm8KoOhabKCYTM5uV044U1vTZ7v2WZPTUO7Ibh3cjOaWA5SxTub0JexTuDBdsODn9vPO_pgW9DGVkootZR5X5_TOuhaPBkqbVNaj5y-5oDDrHd_-vu_fgTgcyxZvWKu7DjbB4APtXpAcfwndcnY0_yPTdVKrxa4Gi2vgvBKC9wGa7cCyZu9w0gpXB5_MwFzHxUKL7tjlvs7wER8RotIJwr3CMM7ncBD1hjNvA3EyxJH_0tSN6CjpYG1muWqoC9UK4WFKCz67uZzyCT8dHH9--l12dBulU-WotU-eVxsybKvN57nWBlUFk4JE4lqOrtQoU9bDKUwxGGa-CK10d6jzX5BJQPYbBYrkIT0AUSNaSEmSraZ1TkTP2SZkVZO2YOJNhOYSk_13WdSLm_HFzu5NfjuNuadxtHHe7HcKL3T2rVsLjr60P2AosARBW0XWcbuTWljyfVkoN4bA3DttN9sYSpmRRmzyn7r3sjeHn5T-_6-m_NT-A2ymTL2Le0CEM1heb8Axuucv1eXMxgr3x0WR6MuLs1dNRnBI_ADGpB7w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VgAQc-EaEFtgDnGCF7PXHLhJCBCitWkIlipTbst5dQ6UQp3UC8l_hR_AbmVnbaYtEbz0g5WApydpx3sy88c68AXhcOswRvDNcuETxxJicF5lKuE2dsr6UuRRlGDaRj8dyMlF7a_C774WhssreJwZH7SpLz8ifY-Am5ZAsU6_mh5ymRtHuaj9Co4XFjm9-YspWv9x-i__vkzjefLf_Zot3UwW4xfx-wWPrRGJSJ4vUZZlLclNIYyhMRpbE08pEePTRpshi46WQTnirbOnLLEsQwEbguhfgItKIWIVSwU8rzy9buk0kikdJPumadEKrHpETyakggsQ4Y96cCoSDCg36FMn9a182hLvN6__bjboB1zpizV63lnAT1vzsFlw9Ibd4G36Z-bfRRx6_3-Ni9IIZVizdV0waHDN1M7MkE1wta0Zq6NOpn7JQbMmNPVwetJVtjFhAMFSGXJ9Z4tY0YgNXGJnGUz8qq9AHf--aWxm-SA-az9v2DLwKZsMYDTo6uYdzBz6fy825C4NZNfP3gOUGLSRGmlpibldgAHKRSnO0cBNZmRo1hKgHiradcDv9uKleSU4HcGkElw7g0s0Qnq6-M29lS8789DrhTyPpIuVgSyVWdqHR2ydCiCFs9EDTnYOr9THKhvCsh-rx2_8-1_2zV3sEl7f2P-zq3e3xzjpcianZJNRJbcBgcbT0D-CS_bE4qI8eBtNj8OW8IfwHtERsSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZGQWh7gPFjWrfB_MAbWFtiJ3H2RoECApVK_FDfrIvtsEld2q3ppP4r_LXcOWnp0EBCSHmIFCdxnPPdZ_m-7xh7VjpcI3gHQjqVCwWQiSLNlbCJy60vdaZlGYpNZIOBHo3y4RqLP2S7L7ckG04DqTRV9dHUlUcr4huFei0ovYCkLWOxuMVuK0qkp_X6528rX6wbAEywRkQqG7W0mZufcS00dSY4xa7Bzt92SkMA6t___65vs3st-OQvG2t5wDZ89ZBtrUkSPmI_YHra-yTit0MheycceDF33xFYOw6zRWVJSncyn3FSDB-P_ZiHhEQB9mJ-1mR_cYqUwZg54mFuCX9SGQp8Qg8WnjibfIJ-6rwlgHI8SDNZTBsKA_aC21Bqgs7W9zkes6_9N19evRNt_QZhZX5ci9g6qSBxukhcmjqVQaEBCJBElmTqSiU9RkMo0hi8ltpJb3Nb-jJNFboKkDusU00qv8t4BmhFMUK5Etc_BTppF-VJhrMAIqsTyLssWv46Y1txc_q4sVnJModxNzjuJoy7WXTZ89U900ba46-t98kiDAITUte1lIZka4MeUUkpu-xgaSimdQIzg1iTxG7SFLv3YmkYvy7_-V17_9b8kN0dvu6bj-8HH_bZZkz8jJBadMA69eXcP2F37FV9Nrt8GubGTz66EPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=aphBO-2GP-3B%3A+a+budgeted+asynchronous+parallel+multi-acquisition+functions+for+constrained+Bayesian+optimization+on+high-performing+computing+architecture&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Tran%2C+Anh&rft.au=Eldred%2C+Mike&rft.au=Wildey%2C+Tim&rft.au=McCann%2C+Scott&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=4&rft_id=info:doi/10.1007%2Fs00158-021-03102-y&rft.externalDocID=10_1007_s00158_021_03102_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon