aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture
High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization probl...
Saved in:
| Published in: | Structural and multidisciplinary optimization Vol. 65; no. 4 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 1615-147X, 1615-1488 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means
a
synchronous
p
arallel
h
edge
B
ayesian
o
ptimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations. |
|---|---|
| AbstractList | High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. Firstly, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations. High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations. High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means a synchronous p arallel h edge B ayesian o ptimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations. |
| ArticleNumber | 132 |
| Author | Sun, Jing Tran, Anh Visintainer, Robert J. McCann, Scott Wildey, Tim Eldred, Mike |
| Author_xml | – sequence: 1 givenname: Anh orcidid: 0000-0002-8629-7161 surname: Tran fullname: Tran, Anh email: anhtran@sandia.gov organization: Optimization and Uncertainty Quantification, Sandia National Laboratories – sequence: 2 givenname: Mike surname: Eldred fullname: Eldred, Mike organization: Optimization and Uncertainty Quantification, Sandia National Laboratories – sequence: 3 givenname: Tim surname: Wildey fullname: Wildey, Tim organization: Optimization and Uncertainty Quantification, Sandia National Laboratories – sequence: 4 givenname: Scott surname: McCann fullname: McCann, Scott organization: Xilinx Inc – sequence: 5 givenname: Jing surname: Sun fullname: Sun, Jing organization: Office of Biostatistics, Office of Translational Sciences, CDER, FDA – sequence: 6 givenname: Robert J. surname: Visintainer fullname: Visintainer, Robert J. organization: GIW Industries Inc |
| BackLink | https://www.osti.gov/servlets/purl/1834333$$D View this record in Osti.gov |
| BookMark | eNp9kc1u1DAUhS1UJNqBF2AVwdrgv3gcdkwFBalSWYDEzrrjOBNXiZ3aziJ9FJ4WZ4JAYlHLks_ifPfH5wpd-OAtQq8peUcJ2b9PhNBaYcIoJpwShpdn6JJKWmMqlLr4q_c_X6CrlO4JIYqI5hL9gqk_3GF28w3zw4cKquPcnmy2bQVp8aaPwYc5VRNEGAY7VOM8ZIfBPMwuueyCr7rZm1WkqguxMkXkCM6XCgdYbHLgqzBlN7pHOPvL7d2px5ONBRidPxVonOa8Koimd9maPEf7Ej3vYEj21Z93h358_vT9-gu-vbv5ev3xFhvekIyZabmAulXHupWyFXs4KgDGGKeGCCE6wS1rGjhKBlZx1XJrGtPZTkpRUwJ8h95sdUPKTiez9u_LHr6MoanigpezQ2830xTDw2xT1vdhjr7MpZkUklApZVNcanOZGFKKttOl2nnt9U8GTYle49JbXLrEpc9x6aWg7D90im6EuDwN8Q1KxexPNv6b6gnqN4NPrh0 |
| CitedBy_id | crossref_primary_10_1007_s40192_024_00360_8 crossref_primary_10_1016_j_actamat_2023_118922 crossref_primary_10_1038_s41524_025_01528_2 crossref_primary_10_1007_s00158_025_03987_z crossref_primary_10_1007_s00158_024_03746_6 crossref_primary_10_1007_s00466_023_02308_9 crossref_primary_10_1016_j_commatsci_2024_112845 crossref_primary_10_1038_s41524_024_01274_x crossref_primary_10_1016_j_aei_2024_102704 crossref_primary_10_1016_j_cma_2025_118066 crossref_primary_10_3389_fmats_2022_915254 |
| Cites_doi | 10.4310/SII.2009.v2.n3.a8 10.1109/TDMR.2017.2738625 10.1115/1.4037459 10.1007/978-3-319-27926-8_4 10.1080/00401706.2015.1014065 10.1109/JPROC.2015.2494218 10.1115/1.4044257 10.1109/ICDM.2016.0144 10.1017/CBO9780511546921 10.1038/nature14539 10.2514/6.1992-439 10.1007/s00158-017-1783-4 10.1007/978-3-642-40988-2_15 10.1109/ECTC.2018.00353 10.1007/978-3-319-69404-7_13 10.1115/DETC2019-97986 10.1007/s10898-020-00920-0 10.1007/s00158-018-2182-1 10.15607/RSS.2014.X.031 10.2172/1784843 10.1016/0749-6419(85)90004-X 10.1115/1.0001599V 10.1162/106365601750190398 10.1080/02664763.2017.1390555 10.1287/opre.1090.0754 10.1115/1.4046697 10.2307/2332286 10.1007/978-3-540-28650-9_4 10.1115/1.4049134 10.1080/0305215X.2011.637556 10.1007/978-3-642-44973-4_7 10.1093/acprof:oso/9780199694587.003.0008 10.1007/s00158-011-0745-5 10.1109/MC.2008.209 10.1137/100801275 10.1214/lnms/1215456182 10.1109/TIT.2011.2182033 10.18637/jss.v051.i01 10.1162/106365603321828970 10.1214/18-BA1110 10.1115/1.3653121 10.1023/A:1008306431147 10.1287/ijoc.1080.0314 10.1007/BFb0006170 10.1145/361002.361007 10.7551/mitpress/7496.003.0011 10.1002/nme.5751 10.1007/978-3-642-34413-8_37 10.1016/j.wear.2018.12.081 10.1016/j.advengsoft.2012.03.002 10.1109/5254.708428 10.1109/ECTC.2016.362 10.1115/FEDSM2009-78274 10.1023/A:1010933404324 10.1016/j.cma.2018.12.033 10.1007/978-3-662-38527-2_55 10.1023/A:1018628609742 |
| ContentType | Journal Article |
| Copyright | National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| Copyright_xml | – notice: National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: National Technology & Engineering Solutions of Sandia, LLC, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| CorporateAuthor | Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| CorporateAuthor_xml | – sequence: 0 name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS OIOZB OTOTI |
| DOI | 10.1007/s00158-021-03102-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| ExternalDocumentID | 1834333 10_1007_s00158_021_03102_y |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS OIOZB OTOTI |
| ID | FETCH-LOGICAL-c390t-2cd34a5d8b5d66d47ab8aa22231c0444f43e299ab62ae838d3ec9cfef664510a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780850700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Thu Dec 05 06:27:02 EST 2024 Wed Nov 05 01:38:42 EST 2025 Sat Nov 29 02:50:18 EST 2025 Tue Nov 18 22:12:41 EST 2025 Fri Feb 21 02:46:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Gaussian process Constrained Asynchronous parallel GP-Hedge Multi-acquisition Bayesian optimization GP-UCB-PE |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-2cd34a5d8b5d66d47ab8aa22231c0444f43e299ab62ae838d3ec9cfef664510a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NA0003525 SAND2020-3391J; SAND2021-14006J USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0002-8629-7161 0000000286297161 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1834333 |
| PQID | 2646016669 |
| PQPubID | 2043658 |
| ParticipantIDs | osti_scitechconnect_1834333 proquest_journals_2646016669 crossref_citationtrail_10_1007_s00158_021_03102_y crossref_primary_10_1007_s00158_021_03102_y springer_journals_10_1007_s00158_021_03102_y |
| PublicationCentury | 2000 |
| PublicationDate | 20220400 2022-04-00 20220401 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
| Publisher_xml | – sequence: 0 name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | AzimiJFernAFernXZBatch Bayesian optimization via simulation matchingAdv Neural Inform Process Syst2010231071171365.90176 Hernández-Lobato D, Hernández-Lobato J, Shah A, Adams R (2016) Predictive entropy search for multi-objective Bayesian optimization. In: International Conference on Machine Learning, pp. 1492–1501 AnandLConstitutive equations for hot-working of metalsInt J Plast1985132132310612.73043 Pagalthivarthi KV, Visintainer RJ (2009) Solid-liquid flow-induced erosion prediction in three-dimensional pump casing. In: ASME 2009 fluids engineering division summer meeting, pp. 611–617. American Society of Mechanical Engineers KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ Basic Eng196486197106 Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J (2018) Deep neural networks as Gaussian processes. In: ICLR Frazier PI (2018) A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439 GinsbourgerDLe RicheRCarraroLKriging is well-suited to parallelize optimizationComput Intell Expensive Optim Probl20102131162 Marmin S, Chevalier C, Ginsbourger D (2015) Differentiating the multipoint expected improvement for optimal batch design. In: International workshop on machine learning, optimization and big data, pp. 37–48. Springer Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881 Standard J (2007) Measurement methods of package warpage at elevated temperature and maximum permissive warpage. JEITA 7306, March ChalupkaKWilliamsCKMurrayIA framework for evaluating approximation methods for Gaussian process regressionJ Mach Learn Res201314Feb33335030333341307.68064 Eriksson D, Pearce M, Gardner J, Turner RD, Poloczek M (2019) Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 5497–5508 Garriga-Alonso A, Rasmussen CE, Aitchison L (2019) Deep convolutional networks as shallow Gaussian processes. In: ICLR Hernández-Lobato JM, Gelbart MA, Adams RP, Hoffman MW, Ghahramani Z (2016) A general framework for constrained Bayesian optimization using information-based search. J Mach Learn Res HansenNMüllerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evolut Comput2003111118 TranAWildeyTMcCannSsMF-BO-2CoGP: a sequential multi-fidelity constrained Bayesian optimization for design applicationsJ Comput Inform Sci Eng2020203115 FrazierPPowellWDayanikSThe knowledge-gradient policy for correlated normal beliefsINFORMS J Comput200921459961325883431243.91014 McCann S, Kuramochi S, Yun H, Sundaram V, Pulugurtha MR, Tummala RR, Sitaraman SK (2016) Board-level reliability of 3D through glass via filters during thermal cycling. In: Electronic components and technology conference (ECTC), 2016 IEEE 66th, pp. 1575–1582. IEEE WhiteFViscous fluid Flow19912New YorkMcGraw-Hill TranASunJFurlanJMPagalthivarthiKVVisintainerRJWangYpBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamicsComput Methods Appl Mech Eng201934782785239039261440.76130 Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel Gaussian process optimization with upper confidence bound and pure exploration. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 225–240. Springer AnkenmanBNelsonBLStaumJStochastic kriging for simulation metamodelingOperat Res201058237138226748031342.62134 McCann S, Lee HH, Refai-Ahmed G, Lee T, Ramalingam S (2018) Warpage and reliability challenges for stacked silicon interconnect technology in large packages. In: 2018 IEEE 68th electronic components and technology conference (ECTC), pp. 2345–2350. IEEE Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In: ICLR LethamBKarrerBOttoniGBakshyEConstrained Bayesian optimization with noisy experimentsBayesian Anal201914249551939340951416.62156 Azimi J, Jalali A, Fern X (2012) Hybrid batch Bayesian optimization. arXiv preprint arXiv:1202.5597 Azimi J, Fern A, Zhang-Fern X, Borradaile G, Heeringa B (2012) Batch active learning via coordinated matching. arXiv preprint arXiv:1206.6458 TranAHeLWangYAn efficient first-principles saddle point searching method based on distributed kriging metamodelsASCE-ASME J Risk Uncertain Eng Syst Part B201841011006 HennigPSchulerCJEntropy search for information-efficient global optimizationJ Mach Learn Res201213Jun1809183729563431432.65073 ParrJKeaneAForresterAIHoldenCInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim20124410114711661250.90089 Alvi AS, Ru B, Calliess J, Roberts SJ, Osborne MA (2019) Asynchronous batch Bayesian optimisation with improved local penalisation. arXiv preprint arXiv:1901.10452 Nguyen V, Rana S, Gupta SK, Li C, Venkatesh S (2016) Budgeted batch Bayesian optimization. In: Data mining (ICDM), 2016 IEEE 16th international conference on, pp. 1107–1112. IEEE Daxberger EA, Low BKH (2017) Distributed batch Gaussian process optimization. In: International conference on machine learning, pp. 951–960 Hernández-Lobato JM, Gelbart M, Hoffman M, Adams R, Ghahramani Z (2015) Predictive entropy search for Bayesian optimization with unknown constraints. In: international conference on machine learning, pp. 1699–1707 Quiñonero-Candela J, Rasmussen CE, Williams CK (2007) Approximation methods for Gaussian process regression. Large-scale kernel machines pp. 203–224 RasmussenCEGaussian processes in machine learning2006CambridgeMIT Press1177.68165 SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett199993293300 Wang Z, Jegelka S (2017) Max-value entropy search for efficient Bayesian optimization. arXiv preprint arXiv:1703.01968 BreimanLRandom forestsMach Learn20014515321007.68152 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607 Chevalier C, Ginsbourger D (2013) Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer SrinivasNKrauseAKakadeSMSeegerMWInformation-theoretic regret bounds for Gaussian process optimization in the bandit settingIEEE Trans Inform Theory20125853250326529525441365.94131 Letham B, Karrer B, Ottoni G, Bakshy E (2017) Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094 HillMDMartyMRAmdahl’s law in the multicore eraComputer20084173338 Standard J (2009) Package warpage measurement of surface-mount integrated circuits at elevated temperature. JESD22-B112 October Pagalthivarthi KV, Furlan JM, Visintainer RJ (2013) Wear rate prediction in multi-size particulate flow through impellers. In: ASME 2013 fluids engineering division summer meeting. American Society of Mechanical Engineers Shah A, Ghahramani Z (2015) Parallel predictive entropy search for batch global optimization of expensive objective functions. In: Advances in neural information processing systems, pp. 3330–3338 Kandasamy K, Krishnamurthy A, Schneider J, Poczos B (2017) Asynchronous parallel Bayesian optimisation via Thompson sampling. arXiv preprint arXiv:1705.09236 WilsonJHutterFDeisenrothMMaximizing acquisition functions for Bayesian optimizationAdv Neural Inform Process Syst20183198849895 Marmin S, Chevalier C, Ginsbourger D (2016) Efficient batch-sequential Bayesian optimization with moments of truncated Gaussian vectors. arXiv preprint arXiv:1609.02700 Hernández-Lobato JM, Hoffman MW, Ghahramani Z (2014) Predictive entropy search for efficient global optimization of black-box functions. In: Advances in neural information processing systems, pp. 918–926 BasudharADribuschCLacazeSMissoumSConstrained efficient global optimization with support vector machinesStruct Multidisc Optim20124622012211274.90271 Wu J, Frazier P (2016) The parallel knowledge gradient method for batch Bayesian optimization. In: Advances in neural information processing systems, pp. 3126–3134 Janusevskis J, Le Riche R, Ginsbourger D, Girdziusas R (2012) Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and intelligent optimization, pp. 413–418. Springer TranAFurlanJMPagalthivarthiKVVisintainerRJWildeyTWangYWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422926 LeCunYBengioYHintonGDeep learningNature20155217553436 AuerPUsing confidence bounds for exploitation-exploration trade-offsJ Mach Learn Res20023Nov39742219840231084.68543 HearstMADumaisSTOsunaEPlattJScholkopfBSupport vector machinesIEEE Intell Syst Appl19981341828 Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. Lecture notes-monograph series pp. 11–25 BostanabadRChanYCWangLZhuPChenWGlobally approximate gaussian processes for big data with application to data-driven metamaterials designJ Mech Des201914111125 Wang Z, Li C, Jegelka S, Kohli P (2017) Batched high-dimensional Bayesian optimization via structural kernel learning. arXiv preprint arXiv:1703.01973 Mockus J (1975) On Bayesian methods for seeking the extremum. In: Optimization techniques IFIP technical conference, pp. 400–404. Springer van BeekAGhummanUFMunshiJTaoSChienTBalasubramanianGPlumleeMApleyDChenWScalable adaptive batch sampling in simulation-based design with heteroscedastic noiseJ Mech Des2021143319 Daniel C, Viering M, Metz J, Kroemer O, Peters J (2014) Active reward learning. In: Robotics: science and systems McCannSSatoYOgawaTTummalaRRSitaramanSKUse of birefringence to determine redistribution layer stresses to create desig 3102_CR1 3102_CR79 WR Thompson (3102_CR102) 1933; 25 A Tran (3102_CR105) 2019; 347 3102_CR6 3102_CR7 F Bachoc (3102_CR8) 2020; 78 N Hansen (3102_CR44) 2003; 11 B Letham (3102_CR67) 2019; 14 DR Jones (3102_CR57) 1998; 13 3102_CR70 B Shahriari (3102_CR92) 2016; 104 I Couckuyt (3102_CR23) 2012; 49 3102_CR74 3102_CR72 3102_CR71 3102_CR78 3102_CR77 3102_CR76 3102_CR75 F White (3102_CR113) 1991 L Anand (3102_CR2) 1985; 1 3102_CR80 Y LeCun (3102_CR63) 2015; 521 3102_CR84 3102_CR83 T Hastie (3102_CR46) 2009; 2 3102_CR82 3102_CR89 3102_CR86 3102_CR15 3102_CR19 HJ Kushner (3102_CR62) 1964; 86 P Frazier (3102_CR32) 2009; 21 B Kamiński (3102_CR58) 2018; 45 O Roustant (3102_CR87) 2012; 51 3102_CR91 3102_CR96 3102_CR95 B Ankenman (3102_CR3) 2010; 58 3102_CR94 3102_CR93 3102_CR99 N Srinivas (3102_CR97) 2012; 58 3102_CR98 3102_CR27 3102_CR26 AD Bull (3102_CR16) 2011; 12 3102_CR25 3102_CR24 3102_CR28 D Ginsbourger (3102_CR39) 2010; 2 A Basudhar (3102_CR9) 2012; 46 A Tran (3102_CR103) 2019; 422 3102_CR21 3102_CR20 3102_CR38 3102_CR37 3102_CR36 3102_CR35 T Desautels (3102_CR29) 2014; 15 H Lee (3102_CR64) 2011; 7 JL Bentley (3102_CR11) 1975; 18 RB Gramacy (3102_CR42) 2016; 58 MD Hill (3102_CR53) 2008; 41 P Hennig (3102_CR48) 2012; 13 S McCann (3102_CR73) 2017; 17 R Bostanabad (3102_CR12) 2019; 141 3102_CR30 J Parr (3102_CR81) 2012; 44 3102_CR34 3102_CR33 3102_CR31 N Cesa-Bianchi (3102_CR17) 2006 3102_CR49 K Chalupka (3102_CR18) 2013; 14 A van Beek (3102_CR10) 2021; 143 W Scott (3102_CR90) 2011; 21 I Couckuyt (3102_CR22) 2014; 15 A Tran (3102_CR106) 2019; 59 3102_CR40 3102_CR43 N Hansen (3102_CR45) 2001; 9 3102_CR59 D Gorissen (3102_CR41) 2010; 11 J Wilson (3102_CR114) 2018; 31 J Azimi (3102_CR5) 2010; 23 3102_CR108 L Breiman (3102_CR14) 2001; 45 3102_CR107 3102_CR52 3102_CR51 3102_CR50 3102_CR56 3102_CR55 3102_CR54 3102_CR100 M Sacher (3102_CR88) 2018; 53 3102_CR69 P Auer (3102_CR4) 2002; 3 3102_CR68 Q Zhou (3102_CR116) 2018; 57 CE Rasmussen (3102_CR85) 2006 A Tran (3102_CR109) 2020; 20 A Tran (3102_CR104) 2018; 4 MA Hearst (3102_CR47) 1998; 13 JA Suykens (3102_CR101) 1999; 9 3102_CR112 3102_CR61 3102_CR115 R Bostanabad (3102_CR13) 2018; 114 3102_CR60 3102_CR66 3102_CR65 3102_CR111 3102_CR110 |
| References_xml | – reference: Pagalthivarthi KV, Visintainer RJ (2009) Solid-liquid flow-induced erosion prediction in three-dimensional pump casing. In: ASME 2009 fluids engineering division summer meeting, pp. 611–617. American Society of Mechanical Engineers – reference: ZhouQWangYChoiSKJiangPShaoXHuJShuLA robust optimization approach based on multi-fidelity metamodelStruct Multidisc Optim2018572775797 – reference: TranATranMWangYConstrained mixed-integer Gaussian mixture Bayesian optimization and its applications in designing fractal and auxetic metamaterialsStruct Multidisc Optim2019591243947842 – reference: BostanabadRKearneyTTaoSApleyDWChenWLeveraging the nugget parameter for efficient Gaussian process modelingInt J Numer Methods Eng201811455015163796819 – reference: HansenNMüllerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evolut Comput2003111118 – reference: Srinivas N, Krause A, Kakade SM, Seeger M (2009) Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995 – reference: DesautelsTKrauseABurdickJWParallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimizationJ Mach Learn Res20141513873392333172141312.62036 – reference: Alvi AS, Ru B, Calliess J, Roberts SJ, Osborne MA (2019) Asynchronous batch Bayesian optimisation with improved local penalisation. arXiv preprint arXiv:1901.10452 – reference: Darveaux R (2000) Effect of simulation methodology on solder joint crack growth correlation. In: Electronic Components & Technology Conference, 2000. 2000 Proceedings. 50th, pp. 1048–1058. IEEE – reference: LethamBKarrerBOttoniGBakshyEConstrained Bayesian optimization with noisy experimentsBayesian Anal201914249551939340951416.62156 – reference: Quiñonero-Candela J, Rasmussen CE, Williams CK (2007) Approximation methods for Gaussian process regression. Large-scale kernel machines pp. 203–224 – reference: Ginsbourger D, Le Riche R, Carraro L (2008) A multi-points criterion for deterministic parallel global optimization based on Gaussian processes – reference: Hernández-Lobato JM, Gelbart M, Hoffman M, Adams R, Ghahramani Z (2015) Predictive entropy search for Bayesian optimization with unknown constraints. In: international conference on machine learning, pp. 1699–1707 – reference: HillMDMartyMRAmdahl’s law in the multicore eraComputer20084173338 – reference: HastieTRossetSZhuJZouHMulti-class AdaBoostStat Its Interface20092334936025400921245.62080 – reference: Shah A, Ghahramani Z (2015) Parallel predictive entropy search for batch global optimization of expensive objective functions. In: Advances in neural information processing systems, pp. 3330–3338 – reference: Tran A, Wang Y, Furlan J, Pagalthivarthi KV, Garman M, Cutright A, Visintainer RJ (2020a) WearGP: A UQ/ML wear prediction framework for slurry pump impellers and casings. In: ASME 2020 fluids engineering division summer meeting. American Society of Mechanical Engineers – reference: Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881 – reference: FrazierPPowellWDayanikSThe knowledge-gradient policy for correlated normal beliefsINFORMS J Comput200921459961325883431243.91014 – reference: GramacyRBGrayGALe DigabelSLeeHKRanjanPWellsGWildSMModeling an augmented Lagrangian for blackbox constrained optimizationTechnometrics20165811113463148 – reference: McCann S, Kuramochi S, Yun H, Sundaram V, Pulugurtha MR, Tummala RR, Sitaraman SK (2016) Board-level reliability of 3D through glass via filters during thermal cycling. In: Electronic components and technology conference (ECTC), 2016 IEEE 66th, pp. 1575–1582. IEEE – reference: McCann S, Lee HH, Refai-Ahmed G, Lee T, Ramalingam S (2018) Warpage and reliability challenges for stacked silicon interconnect technology in large packages. In: 2018 IEEE 68th electronic components and technology conference (ECTC), pp. 2345–2350. IEEE – reference: HennigPSchulerCJEntropy search for information-efficient global optimizationJ Mach Learn Res201213Jun1809183729563431432.65073 – reference: Wang J, Clark SC, Liu E, Frazier PI (2016) Parallel Bayesian global optimization of expensive functions. arXiv preprint arXiv:1602.05149 – reference: Wang Z, Jegelka S (2017) Max-value entropy search for efficient Bayesian optimization. arXiv preprint arXiv:1703.01968 – reference: Daniel C, Viering M, Metz J, Kroemer O, Peters J (2014) Active reward learning. In: Robotics: science and systems – reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Global Optim199813445549216734600917.90270 – reference: BasudharADribuschCLacazeSMissoumSConstrained efficient global optimization with support vector machinesStruct Multidisc Optim20124622012211274.90271 – reference: ChalupkaKWilliamsCKMurrayIA framework for evaluating approximation methods for Gaussian process regressionJ Mach Learn Res201314Feb33335030333341307.68064 – reference: ScottWFrazierPPowellWThe correlated knowledge gradient for simulation optimization of continuous parameters using Gaussian process regressionSIAM J Optim2011213996102628375611229.62018 – reference: BostanabadRChanYCWangLZhuPChenWGlobally approximate gaussian processes for big data with application to data-driven metamaterials designJ Mech Des201914111125 – reference: Surjanovic S, Bingham D Virtual library of simulation experiments: test functions and datasets. https://www.sfu.ca/ssurjano/optimization.html – reference: RoustantOGinsbourgerDDevilleYDiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimizationJ Stat Softw201251154p – reference: Kotthaus H, Richter J, Lang A, Thomas J, Bischl B, Marwedel P, Rahnenführer J, Lang M (2017) RAMBO: Resource-aware model-based optimization with scheduling for heterogeneous runtimes and a comparison with asynchronous model-based optimization. In: International conference on learning and intelligent optimization, pp. 180–195. Springer – reference: Nguyen V, Rana S, Gupta SK, Li C, Venkatesh S (2016) Budgeted batch Bayesian optimization. In: Data mining (ICDM), 2016 IEEE 16th international conference on, pp. 1107–1112. IEEE – reference: Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In: ICLR – reference: Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607 – reference: SacherMDuvigneauRLe MaîtreODurandMBerriniÉHauvilleFAstolfiJAA classification approach to efficient global optimization in presence of non-computable domainsStruct Multidisc Optim2018531213851801 – reference: Mockus J (1982) The Bayesian approach to global optimization. Syst Model Optim pp. 473–481 – reference: SrinivasNKrauseAKakadeSMSeegerMWInformation-theoretic regret bounds for Gaussian process optimization in the bandit settingIEEE Trans Inform Theory20125853250326529525441365.94131 – reference: Hernández-Lobato D, Hernández-Lobato J, Shah A, Adams R (2016) Predictive entropy search for multi-objective Bayesian optimization. In: International Conference on Machine Learning, pp. 1492–1501 – reference: Daxberger EA, Low BKH (2017) Distributed batch Gaussian process optimization. In: International conference on machine learning, pp. 951–960 – reference: TranAHeLWangYAn efficient first-principles saddle point searching method based on distributed kriging metamodelsASCE-ASME J Risk Uncertain Eng Syst Part B201841011006 – reference: KamińskiBSzufelPOn parallel policies for ranking and selection problemsJ Appl Stat201845916901713380034007479870 – reference: BachocFHelbertCPichenyVGaussian process optimization with failures: classification and convergence proofJ Global Optim202078348350641619241472.60062 – reference: Standard J (2009) Package warpage measurement of surface-mount integrated circuits at elevated temperature. JESD22-B112 October – reference: BullADConvergence rates of efficient global optimization algorithmsJ Mach Learn Res201112Oct2879290428543511280.90094 – reference: Garriga-Alonso A, Rasmussen CE, Aitchison L (2019) Deep convolutional networks as shallow Gaussian processes. In: ICLR – reference: Ginsbourger D, Janusevskis J, Le Riche R (2011) Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing & statistics (ERCIM’11) – reference: Wang Z, Li C, Jegelka S, Kohli P (2017) Batched high-dimensional Bayesian optimization via structural kernel learning. arXiv preprint arXiv:1703.01973 – reference: WilsonJHutterFDeisenrothMMaximizing acquisition functions for Bayesian optimizationAdv Neural Inform Process Syst20183198849895 – reference: LeeHGramacyRLinkletterCGrayGOptimization subject to hidden constraints via statistical emulationPac J Optim201173467478288316005964910 – reference: Gardner JR, Kusner MJ, Xu ZE, Weinberger KQ, Cunningham JP (2014) Bayesian optimization with inequality constraints. In: ICML, pp. 937–945 – reference: Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel Gaussian process optimization with upper confidence bound and pure exploration. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 225–240. Springer – reference: TranAWildeyTMcCannSsMF-BO-2CoGP: a sequential multi-fidelity constrained Bayesian optimization for design applicationsJ Comput Inform Sci Eng2020203115 – reference: AnandLConstitutive equations for hot-working of metalsInt J Plast1985132132310612.73043 – reference: Pokuri BSS, Lofquist A, Risko CM, Ganapathysubramanian B (2018) PARyOpt: A software for parallel asynchronous remote Bayesian optimization. arXiv preprint arXiv:1809.04668 – reference: González J, Dai Z, Hennig P, Lawrence N (2016) Batch Bayesian optimization via local penalization. In: Proceedings of the 19th international conference on artificial intelligence and statistics, pp. 648–657 – reference: SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett199993293300 – reference: GorissenDCouckuytIDemeesterPDhaeneTCrombecqKA surrogate modeling and adaptive sampling toolbox for computer based designJ Mach Learn Res20101120512055 – reference: Pagalthivarthi KV, Furlan JM, Visintainer RJ (2015) Finite element prediction of multi-size particulate flow through three-dimensional pump casing. In: ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, pp. V001T31A002–V001T31A002. American Society of Mechanical Engineers – reference: HearstMADumaisSTOsunaEPlattJScholkopfBSupport vector machinesIEEE Intell Syst Appl19981341828 – reference: RasmussenCEGaussian processes in machine learning2006CambridgeMIT Press1177.68165 – reference: AuerPUsing confidence bounds for exploitation-exploration trade-offsJ Mach Learn Res20023Nov39742219840231084.68543 – reference: Chevalier C, Ginsbourger D (2013) Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer – reference: Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp. 2951–2959 – reference: Azimi J, Fern A, Zhang-Fern X, Borradaile G, Heeringa B (2012) Batch active learning via coordinated matching. arXiv preprint arXiv:1206.6458 – reference: AzimiJFernAFernXZBatch Bayesian optimization via simulation matchingAdv Neural Inform Process Syst2010231071171365.90176 – reference: Kathuria T, Deshpande A, Kohli P (2016) Batched Gaussian process bandit optimization via determinantal point processes. In: Adv Neural Inform Process Syst pp. 4206–4214 – reference: Marmin S, Chevalier C, Ginsbourger D (2016) Efficient batch-sequential Bayesian optimization with moments of truncated Gaussian vectors. arXiv preprint arXiv:1609.02700 – reference: Wu J, Frazier P (2016) The parallel knowledge gradient method for batch Bayesian optimization. In: Advances in neural information processing systems, pp. 3126–3134 – reference: Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J (2018) Deep neural networks as Gaussian processes. In: ICLR – reference: BentleyJLMultidimensional binary search trees used for associative searchingCommun ACM19751895095170306.68061 – reference: Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439 – reference: TranAFurlanJMPagalthivarthiKVVisintainerRJWildeyTWangYWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422926 – reference: Rontsis N, Osborne MA, Goulart PJ (2017) Distributionally robust optimization techniques in batch Bayesian optimization. arXiv preprint arXiv:1707.04191 – reference: BreimanLRandom forestsMach Learn20014515321007.68152 – reference: CouckuytIForresterAGorissenDDe TurckFDhaeneTBlind kriging: implementation and performance analysisAdv Eng Softw201249113 – reference: De Palma A, Mendler-Dünner C, Parnell T, Anghel A, Pozidis H (2019) Sampling acquisition functions for batch Bayesian optimization. arXiv preprint arXiv:1903.09434 – reference: Hernández-Lobato JM, Hoffman MW, Ghahramani Z (2014) Predictive entropy search for efficient global optimization of black-box functions. In: Advances in neural information processing systems, pp. 918–926 – reference: McCannSSatoYOgawaTTummalaRRSitaramanSKUse of birefringence to determine redistribution layer stresses to create design guidelines to prevent glass crackingIEEE Trans Device Mater Reliab2017173585592 – reference: Couckuyt I, Dhaene T, Demeester P (2013) ooDACE toolbox, A Matlab Kriging toolbox: Getting started. Universiteit Gent pp. 3–15 – reference: Azimi J, Jalali A, Fern X (2012) Hybrid batch Bayesian optimization. arXiv preprint arXiv:1202.5597 – reference: Pagalthivarthi KV, Furlan JM, Visintainer RJ (2013) Wear rate prediction in multi-size particulate flow through impellers. In: ASME 2013 fluids engineering division summer meeting. American Society of Mechanical Engineers – reference: Letham B, Karrer B, Ottoni G, Bakshy E (2017) Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094 – reference: Hoffman M, Brochu E, de Freitas N (2011) Portfolio allocation for bayesian optimization. In: Proceedings of the twenty-seventh conference on uncertainty in artificial intelligence, UAI’11, pp. 327–336. AUAI Press, Arlington – reference: van BeekAGhummanUFMunshiJTaoSChienTBalasubramanianGPlumleeMApleyDChenWScalable adaptive batch sampling in simulation-based design with heteroscedastic noiseJ Mech Des2021143319 – reference: Frazier PI (2018) A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 – reference: KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ Basic Eng196486197106 – reference: LeCunYBengioYHintonGDeep learningNature20155217553436 – reference: Cesa-BianchiNLugosiGPrediction, learning, and games2006CambridgeCambridge University Press1114.91001 – reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvolut Comput200192159195 – reference: Maddison CJ, Mnih A, Teh YW (2017) The concrete distribution: A continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 – reference: ParrJKeaneAForresterAIHoldenCInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim20124410114711661250.90089 – reference: Standard J (2007) Measurement methods of package warpage at elevated temperature and maximum permissive warpage. JEITA 7306, March – reference: Hernández-Lobato JM, Gelbart MA, Adams RP, Hoffman MW, Ghahramani Z (2016) A general framework for constrained Bayesian optimization using information-based search. J Mach Learn Res – reference: WhiteFViscous fluid Flow19912New YorkMcGraw-Hill – reference: ShahriariBSwerskyKWangZAdamsRPde FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc IEEE20161041148175 – reference: TranASunJFurlanJMPagalthivarthiKVVisintainerRJWangYpBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamicsComput Methods Appl Mech Eng201934782785239039261440.76130 – reference: Janusevskis J, Le Riche R, Ginsbourger D, Girdziusas R (2012) Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and intelligent optimization, pp. 413–418. Springer – reference: CouckuytIDhaeneTDemeesterPooDACE toolbox: a flexible object-oriented Kriging implementationJ Mach Learn Res2014151318331861319.62001 – reference: GinsbourgerDLe RicheRCarraroLKriging is well-suited to parallelize optimizationComput Intell Expensive Optim Probl20102131162 – reference: Mockus J (1975) On Bayesian methods for seeking the extremum. In: Optimization techniques IFIP technical conference, pp. 400–404. Springer – reference: AnkenmanBNelsonBLStaumJStochastic kriging for simulation metamodelingOperat Res201058237138226748031342.62134 – reference: Eriksson D, Pearce M, Gardner J, Turner RD, Poloczek M (2019) Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 5497–5508 – reference: ThompsonWROn the likelihood that one unknown probability exceeds another in view of the evidence of two samplesBiometrika1933253/428529459.1159.03 – reference: Gramacy RB, Lee HKH (2010) Optimization under unknown constraints. arXiv preprint arXiv:1004.4027 – reference: Shahriari B, Wang Z, Hoffman MW, Bouchard-Côté A, de Freitas N (2014) An entropy search portfolio for Bayesian optimization. arXiv preprint arXiv:1406.4625 – reference: Dalbey K, Eldred M, Geraci G, Jakeman J, Maupin K, Monschke JA, Seidl D, Tran A, Menhorn F, Zeng X (2021) Dakota a multilevel parallel object-oriented framework for design optimization parameter estimation uncertainty quantification and sensitivity analysis: version 6.14 theory manual. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerqu – reference: Marmin S, Chevalier C, Ginsbourger D (2015) Differentiating the multipoint expected improvement for optimal batch design. In: International workshop on machine learning, optimization and big data, pp. 37–48. Springer – reference: Rasmussen CE (2004) Gaussian processes in machine learning. In: Advanced lectures on machine learning, pp. 63–71. Springer – reference: Brochu E, Cora VM, de Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 – reference: Nielsen HB, Lophaven SN, Søndergaard J (2002) DACE, a MATLAB Kriging toolbox, vol. 2. Citeseer – reference: Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. Lecture notes-monograph series pp. 11–25 – reference: Tran A, Wildey T, McCann S (2019d) sBF-BO-2CoGP: A sequential bi-fidelity constrained Bayesian optimization for design applications. In: Proceedings of the ASME 2019 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 1: 39th Computers and Information in Engineering Conference. American Society of Mechanical Engineers. V001T02A073 – reference: Kandasamy K, Krishnamurthy A, Schneider J, Poczos B (2017) Asynchronous parallel Bayesian optimisation via Thompson sampling. arXiv preprint arXiv:1705.09236 – ident: 3102_CR21 – volume: 13 start-page: 1809 issue: Jun year: 2012 ident: 3102_CR48 publication-title: J Mach Learn Res – volume-title: Gaussian processes in machine learning year: 2006 ident: 3102_CR85 – ident: 3102_CR96 – volume: 2 start-page: 349 issue: 3 year: 2009 ident: 3102_CR46 publication-title: Stat Its Interface doi: 10.4310/SII.2009.v2.n3.a8 – ident: 3102_CR35 – volume: 17 start-page: 585 issue: 3 year: 2017 ident: 3102_CR73 publication-title: IEEE Trans Device Mater Reliab doi: 10.1109/TDMR.2017.2738625 – volume: 4 start-page: 011006 issue: 1 year: 2018 ident: 3102_CR104 publication-title: ASCE-ASME J Risk Uncertain Eng Syst Part B doi: 10.1115/1.4037459 – ident: 3102_CR69 doi: 10.1007/978-3-319-27926-8_4 – ident: 3102_CR1 – ident: 3102_CR50 – volume: 31 start-page: 9884 year: 2018 ident: 3102_CR114 publication-title: Adv Neural Inform Process Syst – volume: 58 start-page: 1 issue: 1 year: 2016 ident: 3102_CR42 publication-title: Technometrics doi: 10.1080/00401706.2015.1014065 – volume: 104 start-page: 148 issue: 1 year: 2016 ident: 3102_CR92 publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – ident: 3102_CR70 – ident: 3102_CR110 – volume: 141 start-page: 125 issue: 11 year: 2019 ident: 3102_CR12 publication-title: J Mech Des doi: 10.1115/1.4044257 – ident: 3102_CR76 doi: 10.1109/ICDM.2016.0144 – volume-title: Prediction, learning, and games year: 2006 ident: 3102_CR17 doi: 10.1017/CBO9780511546921 – ident: 3102_CR91 – ident: 3102_CR26 – ident: 3102_CR99 – volume: 53 start-page: 1 year: 2018 ident: 3102_CR88 publication-title: Struct Multidisc Optim – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 3102_CR63 publication-title: Nature doi: 10.1038/nature14539 – ident: 3102_CR95 doi: 10.2514/6.1992-439 – volume: 57 start-page: 775 issue: 2 year: 2018 ident: 3102_CR116 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-017-1783-4 – volume: 2 start-page: 131 year: 2010 ident: 3102_CR39 publication-title: Comput Intell Expensive Optim Probl – ident: 3102_CR78 – ident: 3102_CR15 – ident: 3102_CR20 doi: 10.1007/978-3-642-40988-2_15 – ident: 3102_CR72 doi: 10.1109/ECTC.2018.00353 – ident: 3102_CR98 – ident: 3102_CR61 doi: 10.1007/978-3-319-69404-7_13 – ident: 3102_CR65 – ident: 3102_CR108 doi: 10.1115/DETC2019-97986 – ident: 3102_CR115 – volume: 15 start-page: 3183 issue: 1 year: 2014 ident: 3102_CR22 publication-title: J Mach Learn Res – volume: 78 start-page: 483 issue: 3 year: 2020 ident: 3102_CR8 publication-title: J Global Optim doi: 10.1007/s10898-020-00920-0 – volume: 59 start-page: 1 year: 2019 ident: 3102_CR106 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2182-1 – ident: 3102_CR79 – ident: 3102_CR37 – ident: 3102_CR7 – ident: 3102_CR25 doi: 10.15607/RSS.2014.X.031 – ident: 3102_CR24 doi: 10.2172/1784843 – volume-title: Viscous fluid Flow year: 1991 ident: 3102_CR113 – volume: 1 start-page: 213 issue: 3 year: 1985 ident: 3102_CR2 publication-title: Int J Plast doi: 10.1016/0749-6419(85)90004-X – ident: 3102_CR112 – ident: 3102_CR93 – ident: 3102_CR107 doi: 10.1115/1.0001599V – ident: 3102_CR28 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 3102_CR45 publication-title: Evolut Comput doi: 10.1162/106365601750190398 – volume: 45 start-page: 1690 issue: 9 year: 2018 ident: 3102_CR58 publication-title: J Appl Stat doi: 10.1080/02664763.2017.1390555 – ident: 3102_CR82 – ident: 3102_CR34 – volume: 12 start-page: 2879 issue: Oct year: 2011 ident: 3102_CR16 publication-title: J Mach Learn Res – ident: 3102_CR59 – ident: 3102_CR51 – volume: 58 start-page: 371 issue: 2 year: 2010 ident: 3102_CR3 publication-title: Operat Res doi: 10.1287/opre.1090.0754 – volume: 20 start-page: 1 issue: 3 year: 2020 ident: 3102_CR109 publication-title: J Comput Inform Sci Eng doi: 10.1115/1.4046697 – volume: 25 start-page: 285 issue: 3/4 year: 1933 ident: 3102_CR102 publication-title: Biometrika doi: 10.2307/2332286 – ident: 3102_CR84 doi: 10.1007/978-3-540-28650-9_4 – volume: 143 start-page: 19 issue: 3 year: 2021 ident: 3102_CR10 publication-title: J Mech Des doi: 10.1115/1.4049134 – volume: 44 start-page: 1147 issue: 10 year: 2012 ident: 3102_CR81 publication-title: Eng Optim doi: 10.1080/0305215X.2011.637556 – ident: 3102_CR40 – ident: 3102_CR19 doi: 10.1007/978-3-642-44973-4_7 – ident: 3102_CR43 doi: 10.1093/acprof:oso/9780199694587.003.0008 – volume: 14 start-page: 333 issue: Feb year: 2013 ident: 3102_CR18 publication-title: J Mach Learn Res – volume: 46 start-page: 201 issue: 2 year: 2012 ident: 3102_CR9 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-011-0745-5 – ident: 3102_CR60 – volume: 41 start-page: 33 issue: 7 year: 2008 ident: 3102_CR53 publication-title: Computer doi: 10.1109/MC.2008.209 – ident: 3102_CR77 – ident: 3102_CR100 – volume: 7 start-page: 467 issue: 3 year: 2011 ident: 3102_CR64 publication-title: Pac J Optim – volume: 21 start-page: 996 issue: 3 year: 2011 ident: 3102_CR90 publication-title: SIAM J Optim doi: 10.1137/100801275 – ident: 3102_CR54 – ident: 3102_CR89 doi: 10.1214/lnms/1215456182 – volume: 58 start-page: 3250 issue: 5 year: 2012 ident: 3102_CR97 publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.2011.2182033 – ident: 3102_CR31 – volume: 51 start-page: 54p issue: 1 year: 2012 ident: 3102_CR87 publication-title: J Stat Softw doi: 10.18637/jss.v051.i01 – volume: 11 start-page: 1 issue: 1 year: 2003 ident: 3102_CR44 publication-title: Evolut Comput doi: 10.1162/106365603321828970 – ident: 3102_CR68 – volume: 23 start-page: 107 year: 2010 ident: 3102_CR5 publication-title: Adv Neural Inform Process Syst – volume: 14 start-page: 495 issue: 2 year: 2019 ident: 3102_CR67 publication-title: Bayesian Anal doi: 10.1214/18-BA1110 – volume: 86 start-page: 97 issue: 1 year: 1964 ident: 3102_CR62 publication-title: J Basic Eng doi: 10.1115/1.3653121 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 3102_CR57 publication-title: J Global Optim doi: 10.1023/A:1008306431147 – volume: 21 start-page: 599 issue: 4 year: 2009 ident: 3102_CR32 publication-title: INFORMS J Comput doi: 10.1287/ijoc.1080.0314 – ident: 3102_CR75 doi: 10.1007/BFb0006170 – ident: 3102_CR36 – volume: 3 start-page: 397 issue: Nov year: 2002 ident: 3102_CR4 publication-title: J Mach Learn Res – ident: 3102_CR94 – volume: 18 start-page: 509 issue: 9 year: 1975 ident: 3102_CR11 publication-title: Commun ACM doi: 10.1145/361002.361007 – ident: 3102_CR111 – ident: 3102_CR27 – volume: 15 start-page: 3873 issue: 1 year: 2014 ident: 3102_CR29 publication-title: J Mach Learn Res – ident: 3102_CR83 doi: 10.7551/mitpress/7496.003.0011 – ident: 3102_CR33 – volume: 114 start-page: 501 issue: 5 year: 2018 ident: 3102_CR13 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5751 – ident: 3102_CR56 doi: 10.1007/978-3-642-34413-8_37 – ident: 3102_CR52 – volume: 422 start-page: 9 year: 2019 ident: 3102_CR103 publication-title: Wear doi: 10.1016/j.wear.2018.12.081 – volume: 49 start-page: 1 year: 2012 ident: 3102_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.03.002 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 3102_CR47 publication-title: IEEE Intell Syst Appl doi: 10.1109/5254.708428 – ident: 3102_CR49 – ident: 3102_CR66 – ident: 3102_CR71 doi: 10.1109/ECTC.2016.362 – ident: 3102_CR80 doi: 10.1115/FEDSM2009-78274 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 3102_CR14 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 3102_CR55 – volume: 347 start-page: 827 year: 2019 ident: 3102_CR105 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.12.033 – ident: 3102_CR74 doi: 10.1007/978-3-662-38527-2_55 – ident: 3102_CR86 – volume: 11 start-page: 2051 year: 2010 ident: 3102_CR41 publication-title: J Mach Learn Res – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 3102_CR101 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – ident: 3102_CR38 – ident: 3102_CR6 – ident: 3102_CR30 |
| SSID | ssj0008049 |
| Score | 2.4532397 |
| Snippet | High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The... |
| SourceID | osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy asynchronously parallel Bayesian analysis Bayesian optimization Computational fluid dynamics Computational Mathematics and Numerical Analysis Computer simulation Computing costs Constraints Engineering Engineering Design Finite element method Gaussian process Industrial applications known/unknown constrained Mathematical analysis MATHEMATICS AND COMPUTING multi-acquisition Optimization Research Paper Simulation Theoretical and Applied Mechanics |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VbQ9woFBALC3Ih97AYhM73qQXxFa0HFBbiQ_tzXLGNlRaNttmF2n_Cr-2Hse7bZHaC1IOkZI4jmYy8-yZeQOwXwxyLFAobgYm59J7w03lM64cOu-VtTL2WPrxZXhyUo7H1VnacGtTWuXKJkZDbRukPfL3wXETc4hS1YfZBaeuURRdTS00HsAmsSRkMXXv69oSlx38JVDDMzkcp6KZWDpHYKHklKBA5Jg5X95yTL0m_GC3QOc_cdLofo62_3fiT-BxAp7sY6cpT2HDTXfg0Q06wmfw18x-jU55fnzGxeiAGVYv7M8Aqi0z7XKKRKPbLFpGbOGTiZuwmIzIDV4szrvML0ZeMioyC1iYIWFPakERRhiZpaN6TdYEG_U7FX-ycBBfMp915QthFgxjmwk6uxnjeA7fjz59O_zMU-8GjqIazHmOVkhT2LIurFJWDk1dGkNgJEOiqPNSuOAJTa1y40pRWuGwQu-8UjKYCSNeQG_aTN1LYCIso32V1S43tczqMiwwA8zIBugIrBZVH7KV4DQmYnP6uIleUzJHYesgbB2FrZd9eLt-ZtbRetx79y7pgw6ghJh1kVKQcK6DNZRCiD7srQSvkwFo9bXU-_BupTrXl-9-16v7R9uFhzkVYMTcoT3ozS8X7jVs4Z_5eXv5Jqr_FfUODdk priority: 102 providerName: ProQuest |
| Title | aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture |
| URI | https://link.springer.com/article/10.1007/s00158-021-03102-y https://www.proquest.com/docview/2646016669 https://www.osti.gov/servlets/purl/1834333 |
| Volume | 65 |
| WOSCitedRecordID | wos000780850700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1615-1488 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1615-1488 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB1BlwMc-EaUXSofuIGlJnZchxtFu3BApdqFVW-W4w9YqbTdTbtS_wq_lhknKbsIkEDKIVKcxHHGM8_ymzcAL4ph7gonFLdDm3MZo-W2jBlXwYUYlfcy1Vg6_TCaTPRsVk7bpLC6Y7t3W5LJU--S3Si8a06UApKzzPn2JuxhuNNUsOH45HTnf3UDegnK8EyOZm2qzO-fcS0c9ZY4ra5BzV92R1PQObr3f929D3dbkMneNFbxAG6ExUO4c0V68BF8t6uv4488fzflYvyaWVZt_BcE0J7ZertwJJm73NSMlMHn8zBniXjIrTvfnDUsL0YRMRktQ9zLHOFMKjeBTxjbbaDcTLZEf_StTfRkeJA2Ml81qQrYC-ZSSQk6u7qf8Rg-Hx1-evuet3UauBPlcM1z54W0hddV4ZXycmQrbS0Bj8yRHF2UImDUs5XKbdBCexFc6WKISkl0CVY8gd5iuQhPgQlcMscyq0JuK5lVGheTCCmyoQsETIuyD1n3u4xrRczp4-ZmJ7-cxt3guJs07mbbh5e7e1aNhMdfW--TFRgEIKSi64hu5NYGPZ8UQvThoDMO00722iCmJFEbpbB7rzpj-Hn5z-969m_N9-F2TskXiTd0AL31xSY8h1vucn1WXwxgb3w4mR4PiL16MkhT4gdU_Qbx |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NggQ88BtRNsAP8AQWjZ24CRJCFBibVsokxtQ349gOTCptt7Sg_Cv8EfyN3DlJtyGxtz0g5SFSEidxPp-_i---A3ic9IRNrFTc9IzgcVEYbrIi4spbXxTKuTjUWNof9kejdDzOdtfgd5sLQ2GVrU0MhtrNLP0jf44TNymHKJW9mh9yqhpFq6ttCY0aFju--okuW_ly-y1-3ydCbL7be7PFm6oC3KJ_v-DCOhmbxKV54pRycd_kqTE0TUaWxNOKWHq00SZXwvhUpk56m9nCF0rFCGAjsd0LcBFphMhCqOCnleVPa7pNJIpHcX_cJOmEVD0iJymngAgS4xS8OjURdmY4oE-R3L_WZcN0t3n9f-uoG3CtIdbsdT0SbsKan96CqyfkFm_DLzP_NvjIxftdLgcvmGH50n1Fp8ExU1ZTSzLBs2XJSA19MvETFoItubGHy4M6so0RCwgDlSHXZ5a4NZXYwBYGpvKUj8pmaIO_N8mtDDfSg-bzOj0Dn4LZUEaD9k6u4dyBz-fSOXehM51N_T1gMpKyyKLcC5PHUZ6iA400KupZT2Q8yboQtUDRthFup5eb6JXkdACXRnDpAC5ddeHp6pp5LVty5tnrhD-NpIuUgy2FWNmFRmsfSym7sNECTTcGrtTHKOvCsxaqx4f_fa_7Z7f2CC5v7X0Y6uH2aGcdrghKNglxUhvQWRwt_QO4ZH8sDsqjh2HoMfhy3hD-A6ada34 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagILQ98HuibIAfeANrTey4CW8UKCCmUgmY-mZd_INN6tKyppP6r_DXcuekpUOAhJDyEClO4jjnu8_yfd8x9jTrpTazUgvoQSpUCCCgCInQ3voQtHMq1lg6PuqPRvlkUoy3WPwx2329JdlwGkilqaoP5y4cbohvFOpzQekFJG2ZitVVdk1RIj2t1z8db3xx3gBggjUiUf1JS5v5_TMuhabODKfYJdj5y05pDEDDW__f9dvsZgs--cvGWu6wK766y3a3JAnvse8wPxl8FOnbsZCDFxx4uXRfEVg7DotVZUlKd7ZccFIMn079lMeERAH22_K0yf7iFCmjMXPEw9wS_qQyFPiEAaw8cTb5DP3UWUsA5XiQZrKYNxQG7AW3sdQEnW3vc9xnX4ZvPr96J9r6DcLKoleL1DqpIHN5mTmtnepDmQMQIEksydQFJT1GQyh1Cj6XuZPeFjb4oLVCVwFyj3WqWeUfMC5xKR2KpPQplCopc1xkItRIetYTYM2KLkvWv87YVtycPm5qNrLMcdwNjruJ425WXfZsc8-8kfb4a-t9sgiDwITUdS2lIdnaoEdUUsouO1gbimmdwMIg1iSxG62xe8_XhvHz8p_f9fDfmj9hN8avh-bo_ejDPttJiZ8RU4sOWKc-X_pH7Lq9qE8X54_j3PgBZe8QJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=aphBO-2GP-3B%3A+a+budgeted+asynchronous+parallel+multi-acquisition+functions+for+constrained+Bayesian+optimization+on+high-performing+computing+architecture&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Tran%2C+Anh&rft.au=Eldred%2C+Mike&rft.au=Wildey%2C+Tim&rft.au=McCann%2C+Scott&rft.date=2022-04-01&rft.pub=Springer&rft.issn=1615-147X&rft.volume=65&rft.issue=4&rft_id=info:doi/10.1007%2Fs00158-021-03102-y&rft.externalDocID=1834333 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |