Predictive Control Algorithm Including Conduction-Mode Detection for PFC Converter

This paper proposes a predictive control algorithm that includes conduction-mode detection for power factor correction (PFC) converter. In PFC converters, the line current is usually distorted because of the characteristics of the proportional-integral (PI) current controller. To improve the quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 63; H. 9; S. 5900 - 5911
Hauptverfasser: Park, Jin-Hyuk, Kim, Dae Joong, Lee, Kyo-Beum
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a predictive control algorithm that includes conduction-mode detection for power factor correction (PFC) converter. In PFC converters, the line current is usually distorted because of the characteristics of the proportional-integral (PI) current controller. To improve the quality of the current, the PI current controller requires additional circuits or algorithms. However, because of the optimal duty cycle determined by estimating the next-state current in both the continuous-conduction mode and the discontinuous-conduction mode, the proposed predictive control method has a fast dynamic response and accuracy compared to the PI current-control method. Moreover, the proposed algorithm can detect the conduction mode without any additional circuitry or mode-detection algorithm using the characteristic of the optimal duty cycle calculated by the predictive control. These advantages of the proposed algorithm improve the quality of the line current for PFC converters. We verify the proposed method by performing experiment using a 1.5-kW PFC converter.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2016.2578279