Parameter ESTimation With the Gauss–Levenberg–Marquardt Algorithm: An Intuitive Guide
In this paper, we review the derivation of the Gauss–Levenberg–Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning para...
Gespeichert in:
| Veröffentlicht in: | Ground water Jg. 63; H. 1; S. 93 - 104 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Malden, US
Blackwell Publishing Ltd
01.01.2025
Ground Water Publishing Company |
| Schlagworte: | |
| ISSN: | 0017-467X, 1745-6584, 1745-6584 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we review the derivation of the Gauss–Levenberg–Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non‐unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.
|
|---|---|
| Bibliographie: | The authors do not have any conflicts of interest or financial disclosures to report. We break down the mathematics underlying the PEST/PEST++ parameter estimation tools with graphical interpretations to provide insights. Article impact statement ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0017-467X 1745-6584 1745-6584 |
| DOI: | 10.1111/gwat.13433 |