Two‐stage stochastic minimum s − t cut problems: Formulations, complexity and decomposition algorithms
We introduce the two‐stage stochastic minimum s − t cut problem. Based on a classical linear 0‐1 programming model for the deterministic minimum s − t cut problem, we provide a mathematical programming formulation for the proposed stochastic extension. We show that its constraint matrix loses the to...
Saved in:
| Published in: | Networks Vol. 75; no. 3; pp. 235 - 258 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2020
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0028-3045, 1097-0037 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We introduce the two‐stage stochastic minimum s − t cut problem. Based on a classical linear 0‐1 programming model for the deterministic minimum s − t cut problem, we provide a mathematical programming formulation for the proposed stochastic extension. We show that its constraint matrix loses the total unimodularity property, however, preserves it if the considered graph is a tree. This fact turns out to be not surprising as we prove that the considered problem is NP‐hard in general, but admits a linear time solution algorithm when the graph is a tree. We exploit the special structure of the problem and propose a tailored Benders decomposition algorithm. We evaluate the computational efficiency of this algorithm by solving the Benders dual subproblems as max‐flow problems. For many tested instances, we outperform a standard Benders decomposition by two orders of magnitude with the Benders decomposition exploiting the max‐flow structure of the subproblems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0028-3045 1097-0037 |
| DOI: | 10.1002/net.21922 |