Anomaly Detection in COVID-19 Time-Series Data

Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science Jg. 2; H. 4; S. 279
Hauptverfasser: Homayouni, Hajar, Ray, Indrakshi, Ghosh, Sudipto, Gondalia, Shlok, Kahn, Michael G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:2662-995X, 2661-8907, 2661-8907
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown.
AbstractList Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown.
Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown.Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown.
ArticleNumber 279
Author Ray, Indrakshi
Kahn, Michael G.
Ghosh, Sudipto
Gondalia, Shlok
Homayouni, Hajar
Author_xml – sequence: 1
  givenname: Hajar
  surname: Homayouni
  fullname: Homayouni, Hajar
  organization: Computer Science Department, Colorado State University
– sequence: 2
  givenname: Indrakshi
  surname: Ray
  fullname: Ray, Indrakshi
  organization: Computer Science Department, Colorado State University
– sequence: 3
  givenname: Sudipto
  orcidid: 0000-0001-6000-9646
  surname: Ghosh
  fullname: Ghosh, Sudipto
  email: ghosh@colostate.edu
  organization: Computer Science Department, Colorado State University
– sequence: 4
  givenname: Shlok
  surname: Gondalia
  fullname: Gondalia, Shlok
  organization: Computer Science Department, Colorado State University
– sequence: 5
  givenname: Michael G.
  surname: Kahn
  fullname: Kahn, Michael G.
  organization: Anschutz Medical Campus, University of Colorado Denver
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34027432$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlPHDEQha2IKCzhD-QQtZRLLiZe2tslEppJCBISB0iUm-V2VxOjbpvYPYz49zEMhOXAySX5e0-v6u2irZgiIPSBkgNKiPpSWmaUwYRRTIgUGq_foB0mJcXaELV1NzNsjPi9jfZLuSSEMEHaVop3aJu3hKmWsx10cBjT5MabZgkz-Dmk2ITYLE5_HS8xNc15mACfQQ5QmqWb3Xv0dnBjgf37dw_9_P7tfPEDn5weHS8OT7Dn2qxxLzrau473svPGgPRGC98RJT2VvXdOdE5oM3jfSz60lPSKQqt8D3XsBg18D33d-F6tugl6D3HObrRXOUwu39jkgn3-E8Mfe5GuraacMS2qwed7g5z-rqDMdgrFwzi6CGlVLBOcipYqqiv66QV6mVY51vUsM5wpbeqlK_XxaaL_UR5OWQG9AXxOpWQYrA-zu71oDRhGS4m9Lc5uirO1OHtXnF1XKXshfXB_VcQ3olLheAH5MfYrqn-B2qpa
CitedBy_id crossref_primary_10_3390_computers14070276
crossref_primary_10_1371_journal_pcbi_1012423
crossref_primary_10_1016_j_ijdrr_2024_104625
crossref_primary_10_1016_j_eij_2025_100642
crossref_primary_10_3390_s23229272
crossref_primary_10_14746_sr_2024_8_3_03
crossref_primary_10_1016_j_inffus_2022_10_008
crossref_primary_10_1007_s41870_022_00967_0
crossref_primary_10_1016_j_compositesb_2024_111802
crossref_primary_10_2139_ssrn_5178847
Cites_doi 10.1007/978-3-030-55180-3_45
10.1109/ACCESS.2018.2870151
10.1016/j.neucom.2017.08.026
10.1016/j.jcrc.2020.03.005
10.1016/j.scs.2017.08.009
10.1144/geochem2016-024
10.1109/LRA.2018.2801475
10.3390/ijerph17155330
10.1016/S0140-6736(20)30526-2
10.1093/jamia/ocaa071
10.1016/j.envsoft.2018.06.004
10.1162/neco_a_01199
10.1109/ACCESS.2020.3022366
10.1007/s10100-017-0479-6
10.1007/s13347-017-0293-z
10.1111/j.1751-5823.2011.00148.x
10.1145/3097983.3098052
10.1109/BigData50022.2020.9378192
10.1109/SIEDS.2019.8735594
10.1109/CCECE.2018.8447597
10.1109/MDM.2018.00029
10.1109/PHM-Paris.2019.00055
10.1007/978-1-4842-3516-4_9
10.1109/ICDMW.2015.104
10.1007/s10489-020-01902-1
10.1007/978-981-15-3992-3_42
10.1101/2020.07.06.20147512
10.1101/2020.09.02.20186502
10.1145/2783258.2788611
10.1109/ICCIKE47802.2019.9004325
10.1080/10618600.2019.1617160
10.1155/2020/6152041
10.1093/oso/9780198538493.001.0001
10.1145/335191.335388
10.1109/DEPCOS-RELCOMEX.2006.38
10.1109/DSAA.2016.92
10.1109/IRI.2019.00023
10.1109/BigData47090.2019.9006446
10.1145/3338840.3355641
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1007/s42979-021-00658-w
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID PMC8132285
34027432
10_1007_s42979_021_00658_w
Genre Journal Article
GrantInformation_xml – fundername: Google
  funderid: http://dx.doi.org/10.13039/100006785
– fundername: National Science Foundation
  grantid: CNS 1650573
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: CableLabs, Furuno Electric Company, SecureNok, AFRL, and NIST
– fundername: National Science Foundation (US)
  grantid: CNS 1822118; OAC 1931363
– fundername: National Science Foundation (US)
  grantid: IIS 2027750; IIS 2027750
– fundername: ;
– fundername: ;
  grantid: IIS 2027750; IIS 2027750
– fundername: ;
  grantid: CNS 1650573
– fundername: ;
  grantid: CNS 1822118; OAC 1931363
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c389w-d5b1dab3d6bc99e6c985cb076c16dcaa5ba589fccd63f410d71e47cde10dbf8e3
IEDL.DBID P5Z
ISSN 2662-995X
2661-8907
IngestDate Tue Nov 04 01:57:44 EST 2025
Fri Sep 05 14:09:02 EDT 2025
Wed Nov 05 14:57:20 EST 2025
Wed Feb 19 02:26:33 EST 2025
Tue Nov 18 22:29:38 EST 2025
Sat Nov 29 05:16:49 EST 2025
Fri Feb 21 02:48:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19 data
LSTM-autoencoder
Explainability
Anomaly detection
Time series
Data quality tests
Language English
License The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389w-d5b1dab3d6bc99e6c985cb076c16dcaa5ba589fccd63f410d71e47cde10dbf8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6000-9646
OpenAccessLink http://dx.doi.org/10.1007/s42979-021-00658-w
PMID 34027432
PQID 2932789297
PQPubID 6623307
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8132285
proquest_miscellaneous_2531541718
proquest_journals_2932789297
pubmed_primary_34027432
crossref_citationtrail_10_1007_s42979_021_00658_w
crossref_primary_10_1007_s42979_021_00658_w
springer_journals_10_1007_s42979_021_00658_w
PublicationCentury 2000
PublicationDate 20210700
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Park, Hoshi, Kemp (CR35) 2018; 3
CR38
CR37
CR36
Kaminski, Jakubczyk, Szufel (CR42) 2018; 26
Chen, Wu (CR12) 2017; 17
de Laat (CR41) 2018; 31
Aljbali, Roy, Arai, Kapoor, Bhatia (CR46) 2021
Karadayi, Aydin, Öǧrencí (CR5) 2020; 8
CR2
CR4
Bishop (CR34) 1995
CR6
Park (CR39) 2017
CR7
Kuster, Rezgui, Mourshed (CR30) 2017; 35
CR49
CR47
CR45
CR44
CR43
CR40
Wenham, Smith, Morgan (CR1) 2020; 395
Yu, Si, Hu, Zhang (CR9) 2019; 31
Adhikari, Agrawal (CR33) 2013
Lu, Liu, Fei, Guan (CR18) 2018; 6
Wu, Zeng, Yan (CR11) 2018; 273
Agbehadji, Awuzie, Ngowi, Millham (CR8) 2020; 17
CR19
CR17
CR16
CR15
CR14
CR13
CR10
Hasani, Jakimovski, Velinov, Kon-Popovska (CR32) 2018
Wissel, Van Camp, Kouril, Weis, Glauser, White, Kohane, Dexheimer (CR50) 2020; 27
Finlay, Fung, Seneta (CR48) 2011; 79
CR52
CR51
Maçaira, Thomé, Oliveira, Ferrer (CR31) 2018; 107
Cortegiani, Ingoglia, Ippolito, Giarratano, Einav (CR3) 2020; 57
CR29
CR28
CR27
CR26
CR25
CR24
CR23
CR22
CR21
CR20
658_CR7
658_CR20
C Wenham (658_CR1) 2020; 395
658_CR6
658_CR24
658_CR23
658_CR22
658_CR21
658_CR28
658_CR27
658_CR26
658_CR25
658_CR29
D Park (658_CR35) 2018; 3
KI Park (658_CR39) 2017
IE Agbehadji (658_CR8) 2020; 17
J Wu (658_CR11) 2018; 273
658_CR38
658_CR37
658_CR36
Y Yu (658_CR9) 2019; 31
C Kuster (658_CR30) 2017; 35
H Lu (658_CR18) 2018; 6
Y Karadayi (658_CR5) 2020; 8
S Aljbali (658_CR46) 2021
R Adhikari (658_CR33) 2013
PM Maçaira (658_CR31) 2018; 107
Z Hasani (658_CR32) 2018
658_CR40
658_CR45
658_CR44
658_CR43
658_CR49
658_CR47
Y Chen (658_CR12) 2017; 17
CM Bishop (658_CR34) 1995
R Finlay (658_CR48) 2011; 79
658_CR52
658_CR51
658_CR13
658_CR10
658_CR17
658_CR16
658_CR15
BD Wissel (658_CR50) 2020; 27
658_CR14
658_CR19
PB de Laat (658_CR41) 2018; 31
B Kaminski (658_CR42) 2018; 26
658_CR4
658_CR2
A Cortegiani (658_CR3) 2020; 57
References_xml – ident: CR45
– ident: CR22
– ident: CR49
– ident: CR4
– ident: CR16
– start-page: 612
  year: 2021
  end-page: 619
  ident: CR46
  article-title: Anomaly detection using bidirectional LSTM
  publication-title: Intelligent systems and applications
  doi: 10.1007/978-3-030-55180-3_45
– ident: CR51
– volume: 6
  start-page: 53593
  year: 2018
  end-page: 53610
  ident: CR18
  article-title: An outlier detection algorithm based on cross-correlation analysis for time series dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870151
– volume: 273
  start-page: 535
  year: 2018
  end-page: 546
  ident: CR11
  article-title: Hierarchical temporal memory method for time-series-based anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.026
– ident: CR29
– ident: CR25
– volume: 57
  start-page: 279
  year: 2020
  end-page: 283
  ident: CR3
  article-title: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2020.03.005
– ident: CR21
– volume: 35
  start-page: 257
  year: 2017
  end-page: 270
  ident: CR30
  article-title: Electrical load forecasting models: a critical systematic review
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2017.08.009
– volume: 17
  start-page: 231
  issue: 3
  year: 2017
  end-page: 238
  ident: CR12
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem Explor Environ Anal
  doi: 10.1144/geochem2016-024
– ident: CR19
– start-page: 385
  year: 2018
  end-page: 397
  ident: CR32
  publication-title: An adaptive anomaly detection algorithm for periodic data streams, “intelligent data engineering and automated learning”
– ident: CR15
– ident: CR36
– volume: 3
  start-page: 1544
  issue: 3
  year: 2018
  end-page: 1551
  ident: CR35
  article-title: A multimodalanomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2801475
– year: 1995
  ident: CR34
  publication-title: Bishop PoNCCM. Neural networks for pattern recognition
– ident: CR26
– volume: 17
  start-page: 5330
  issue: 15
  year: 2020
  ident: CR8
  article-title: Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17155330
– year: 2017
  ident: CR39
  publication-title: Fundamentals of probability and stochastic processes with applications to communications
– ident: CR43
– ident: CR47
– volume: 395
  start-page: 846
  issue: 10227
  year: 2020
  end-page: 848
  ident: CR1
  article-title: COVID-19: the gendered impacts of the outbreak
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30526-2
– volume: 27
  start-page: 1121
  issue: 7
  year: 2020
  end-page: 1125
  ident: CR50
  article-title: An interactive online dashboard for tracking COVID-19 in US counties, cities, and states in real time
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa071
– ident: CR14
– ident: CR2
– volume: 107
  start-page: 199
  year: 2018
  end-page: 209
  ident: CR31
  article-title: Time series analysis with explanatory variables: a systematic literature review
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2018.06.004
– ident: CR37
– ident: CR10
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  end-page: 1270
  ident: CR9
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– ident: CR6
– volume: 8
  start-page: 164155
  year: 2020
  end-page: 164177
  ident: CR5
  article-title: Unsupervised anomaly detection in multivariate spatio-temporal data using deep learning: early detection of COVID-19 outbreak in Italy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022366
– volume: 26
  start-page: 135
  issue: 1
  year: 2018
  end-page: 159
  ident: CR42
  article-title: A framework for sensitivity analysis of decision trees
  publication-title: Cent Eur J Oper Res
  doi: 10.1007/s10100-017-0479-6
– ident: CR40
– volume: 31
  start-page: 525
  issue: 4
  year: 2018
  end-page: 541
  ident: CR41
  article-title: Algorithmic decision-making based on machine learning from big data: can transparency restore accountability
  publication-title: Philos Technol
  doi: 10.1007/s13347-017-0293-z
– ident: CR27
– ident: CR23
– volume: 79
  start-page: 255
  issue: 2
  year: 2011
  end-page: 271
  ident: CR48
  article-title: Autocorrelation functions
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2011.00148.x
– ident: CR44
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR13
– ident: CR7
– ident: CR28
– ident: CR24
– year: 2013
  ident: CR33
  publication-title: An introductory study on time series modeling and forecasting
– ident: CR20
– ident: 658_CR52
  doi: 10.1145/3097983.3098052
– ident: 658_CR19
  doi: 10.1109/BigData50022.2020.9378192
– volume-title: Fundamentals of probability and stochastic processes with applications to communications
  year: 2017
  ident: 658_CR39
– ident: 658_CR10
  doi: 10.1109/SIEDS.2019.8735594
– ident: 658_CR37
– ident: 658_CR40
  doi: 10.1109/CCECE.2018.8447597
– ident: 658_CR44
  doi: 10.1109/MDM.2018.00029
– ident: 658_CR23
– ident: 658_CR36
  doi: 10.1109/PHM-Paris.2019.00055
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 658_CR9
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– volume: 6
  start-page: 53593
  year: 2018
  ident: 658_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870151
– ident: 658_CR47
  doi: 10.1007/978-1-4842-3516-4_9
– volume: 395
  start-page: 846
  issue: 10227
  year: 2020
  ident: 658_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30526-2
– ident: 658_CR28
  doi: 10.1109/ICDMW.2015.104
– ident: 658_CR2
  doi: 10.1007/s10489-020-01902-1
– ident: 658_CR22
– volume: 8
  start-page: 164155
  year: 2020
  ident: 658_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022366
– volume: 31
  start-page: 525
  issue: 4
  year: 2018
  ident: 658_CR41
  publication-title: Philos Technol
  doi: 10.1007/s13347-017-0293-z
– volume: 3
  start-page: 1544
  issue: 3
  year: 2018
  ident: 658_CR35
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2801475
– ident: 658_CR26
– ident: 658_CR15
  doi: 10.1007/978-981-15-3992-3_42
– ident: 658_CR4
  doi: 10.1101/2020.07.06.20147512
– ident: 658_CR6
  doi: 10.1101/2020.09.02.20186502
– ident: 658_CR29
  doi: 10.1145/2783258.2788611
– ident: 658_CR27
  doi: 10.1109/ICCIKE47802.2019.9004325
– volume: 107
  start-page: 199
  year: 2018
  ident: 658_CR31
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2018.06.004
– ident: 658_CR43
  doi: 10.1080/10618600.2019.1617160
– volume: 17
  start-page: 5330
  issue: 15
  year: 2020
  ident: 658_CR8
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17155330
– volume: 27
  start-page: 1121
  issue: 7
  year: 2020
  ident: 658_CR50
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa071
– start-page: 385
  volume-title: An adaptive anomaly detection algorithm for periodic data streams, “intelligent data engineering and automated learning”
  year: 2018
  ident: 658_CR32
– start-page: 612
  volume-title: Intelligent systems and applications
  year: 2021
  ident: 658_CR46
  doi: 10.1007/978-3-030-55180-3_45
– ident: 658_CR7
  doi: 10.1155/2020/6152041
– volume: 57
  start-page: 279
  year: 2020
  ident: 658_CR3
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2020.03.005
– ident: 658_CR21
– ident: 658_CR25
– volume: 79
  start-page: 255
  issue: 2
  year: 2011
  ident: 658_CR48
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2011.00148.x
– volume-title: Bishop PoNCCM. Neural networks for pattern recognition
  year: 1995
  ident: 658_CR34
  doi: 10.1093/oso/9780198538493.001.0001
– volume-title: An introductory study on time series modeling and forecasting
  year: 2013
  ident: 658_CR33
– ident: 658_CR13
  doi: 10.1145/335191.335388
– ident: 658_CR51
– volume: 35
  start-page: 257
  year: 2017
  ident: 658_CR30
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2017.08.009
– ident: 658_CR38
  doi: 10.1109/DEPCOS-RELCOMEX.2006.38
– ident: 658_CR45
  doi: 10.1109/DSAA.2016.92
– volume: 273
  start-page: 535
  year: 2018
  ident: 658_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.026
– ident: 658_CR20
– ident: 658_CR16
  doi: 10.1109/IRI.2019.00023
– volume: 17
  start-page: 231
  issue: 3
  year: 2017
  ident: 658_CR12
  publication-title: Geochem Explor Environ Anal
  doi: 10.1144/geochem2016-024
– ident: 658_CR17
  doi: 10.1109/BigData47090.2019.9006446
– ident: 658_CR14
  doi: 10.1145/3338840.3355641
– ident: 658_CR49
– ident: 658_CR24
– volume: 26
  start-page: 135
  issue: 1
  year: 2018
  ident: 658_CR42
  publication-title: Cent Eur J Oper Res
  doi: 10.1007/s10100-017-0479-6
SSID ssj0002504465
Score 2.2626996
Snippet Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms Anomalies
Artificial Intelligence for HealthCare
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
COVID-19
Data analysis
Data Structures and Information Theory
Datasets
Epidemics
Health care facilities
Information Systems and Communication Service
Machine learning
Original Research
Outliers (statistics)
Pattern Recognition and Graphics
Quality control
Scientific visualization
Software Engineering/Programming and Operating Systems
Subject specialists
Time series
Vision
Visualization
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZSsQwcPB68MX7qBcVfNOI2TZp8iiuoiAqHsu-lTRJcUG74q4u_r2TbFtZL9C3QiZtM5M5krkAdpjNBUcuIxHnMYnzGOUg5YxY5RquUmaNz-JvnScXF6LdlldlUlivinavXJJeUtfJbig5E0lcSIHXm2QwDpOo7oRr2HB906pvVlxRrtj3kETl0yBSsnaZLfP9a0Y10hcz82u05CeXqddEJ7P_W8MczJSWZ3g43CrzMGaLBZitujqEJZMvwv5h0X1UD29h0_Z9nFYRdorw6LJ11iRUhi5nhLg7NdsLm6qvluDu5Pj26JSUXRWIRuNkQAzLqFFZZHimpbRcS8F0dpBwTbnRSrFMMSFzrQ2P8pgemITaONHG4mOWCxstw0TRLewqhN6Pa7JEJ65ovm5IE3GEYWhyigjhA6AVZlNdlhx3nS8e0rpYskdIighJPULSQQC79ZynYcGNX6E3KoKlJfP1UrRgXH4vwgawXQ8j2zhfiCps9wVhUPawmKJmDmBlSN_6c1HszupRI4BkhPI1gCvJPTpSdO59aW7hDveCBbBX0f_jt35exdrfwNdhuuG3kAsa3oCJ_vOL3YQp_drv9J63PDO8A0PNAnU
  priority: 102
  providerName: Springer Nature
Title Anomaly Detection in COVID-19 Time-Series Data
URI https://link.springer.com/article/10.1007/s42979-021-00658-w
https://www.ncbi.nlm.nih.gov/pubmed/34027432
https://www.proquest.com/docview/2932789297
https://www.proquest.com/docview/2531541718
https://pubmed.ncbi.nlm.nih.gov/PMC8132285
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Computer Science Database (NC LIVE)
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHLgAEx8LjCpI3MAwJ_HXaRrrJhCoVAOqikvk2I6oNNKxdlT797znppm6iV24RIn8osR-fh9-nwCvRKi1RCpjuZQFK-oC-SCXggVLDVe5CD5m8Y8-q8FAj8dm2BrcZm1Y5YonRkbtp45s5O9QLFHSZmbU_tlvRl2jyLvattDYgC2qkkCtG4biR2djofJcRewmiWIoY8aIcZs3E7PnkBUrwyhGIQpitliXTTcUzptxk9ecp1EmHT_439k8hPutNpoeLLfPNtwJzSN4e9BMf9nTy7Qf5jFQq0knTXr4ZfSxz7hJKWmEkVEtzNK-ndvH8P346NvhB9a2VWAOtZMF86Li3la5l5UzJkhntHDVnpKOS--sFZUV2tTOeZnXBd_ziodCOR_wtqp1yJ_AZjNtwg6k0ZHrK-UUVc13mfG5RBiBOqfOET4BvlrQ0rU1x6n1xWnZVUuOSCgRCWVEQrlI4HX3ztmy4sat0LurBS5b6puVV6ubwMtuGOmGnCG2CdMLhEHmIwqOojmBp0u0dp_LCzqs51kCag3hHQDV5F4faSY_Y21uTad7LRJ4s9oaV7_171k8u30Wz-FeFrcpRQnvwub8_CK8gLvuz3wyO-_BhhrrHmy9PxoMT_Dpk2K9SAd4Pfk6-gswOAnw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNA9KkUJLiwCCimBYwEJxjK2LMeEKoaqkYJgUOpcjPjmbGIVJzSpI36U3wjbya2q1DRWw_cLM3zMn7rvBXgFfeVEshlJBeCEVYxlINUcOJNGLhKuXexiv9wKEcjNR7rr2vwu62FCWmVrUyMgtpNbfCRb6NaCkWbmZYfj3-RMDUqRFfbERpLshj48wUe2WYf-j3E7-ss2_t0sLtPmqkCxKJyXhDHS-pMmTtRWq29sFpxW-Jx3lLhrDG8NFzpylon8orR905Sz6R1Hi_LSvkcn3sDbrJcycBXA0k6n05oB8bi9EpUexnRmo-bOp1YrYeiX2oSciKi4ieLVV14ycC9nKf5V7A26sC9e__b37sPdxtrO91ZsscDWPP1Q3i3U09_mqPztOfnMRGtTid1uvvlsN8jVKehKIYEp6GfpT0zN4_g27V84mNYr6e1fwJpDFS7UloZpgLYTLtcIAxHm1rlCJ8AbRFY2KanehjtcVR03aAj0gtEehGRXiwSeNPdc7zsKHIl9FaL0KKRLrPiApsJvOyWUS6EYI-p_fQUYVC4ckbR9EhgY0lG3etyFpwReZaAXCGwDiD0HF9dqSc_Yu9xFbwXiifwtiXFi8_69y6eXr2LF3B7_-DzsBj2R4NNuJNFFgkZ0VuwPj859c_glj2bT2YnzyO_pfD9ukn0D9PCZvk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BmBAvDLYxAmUEiTdmSj7sxI9Tu4pqVakEVH2LHNsRlTq3ajMq_nvObpKtK0NCvEXK5cPnO9_Zd_c7gPdUFylDLSMRYzGJixjXwYBRooVtuBpQrVwV_3iQDIfpZMJHt6r4XbZ7HZLc1DRYlCZTtheqaDeFb7iKJpzY9AJnQ8n6ITyKbSK93a9_HTenLBagK3b9JNEQhYRzOqkqZ_78mm3rtONy7mZO3gmfOqvUO_j_8TyDp5VH6p9vROg5PNDmEA7qbg9-pfxH8PHczK_E7Jff1aXL3zL-1PidL-N-lwTct7UkxJ616ZXfFaU4hu-9i2-dz6TqtkAkOi1romgeKJFHiuWSc80kT6nMPyVMBkxJIWguaMoLKRWLCuS1SgIdJ1JpvMyLVEcvYM_MjX4JvovvqjyRiQXTlyFXEUMaiq5oGiG9B0HN5UxWUOS2I8Ysa0CUHUMyZEjmGJKtPfjQPLPYAHH8lbpVT15WKeUqQ8_G1v0irQfvmtuoTjZGIoyeXyMNrkk0DtBie3Cymevmc1Fs9_BR6EGyJQUNgYXq3r5jpj8cZHdqN_0p9eCsloWb37p_FK_-jfwtPB51e9mgP7x8DU9CJ002r7gFe-XyWr-BffmznK6Wp05HfgOmwg49
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+COVID-19+Time-Series+Data&rft.jtitle=SN+computer+science&rft.au=Homayouni%2C+Hajar&rft.au=Ray%2C+Indrakshi&rft.au=Ghosh%2C+Sudipto&rft.au=Gondalia%2C+Shlok&rft.date=2021-07-01&rft.pub=Springer+Singapore&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-021-00658-w&rft_id=info%3Apmid%2F34027432&rft.externalDocID=PMC8132285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon