Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations

This paper studies the so-called biquadratic optimization over unit spheres ... , subject to ... . The authors show that this problem is NP-hard, and there is no polynomial time algorithm returning a positive relative approximation bound. Then, they present various approximation methods based on sem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 20; číslo 3; s. 1286 - 1310
Hlavní autoři: Ling, Chen, Nie, Jiawang, Qi, Liqun, Ye, Yinyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2009
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the so-called biquadratic optimization over unit spheres ... , subject to ... . The authors show that this problem is NP-hard, and there is no polynomial time algorithm returning a positive relative approximation bound. Then, they present various approximation methods based on semidefinite programming (SDP) relaxations.Their theoretical results are as follows: For general biquadratic forms, they develop a ... -approximation algorithm under a slightly weaker approximation notion; for biquadratic forms that are square-free, we give a relative approximation bound ... when min ... is a constant, we present two polynomial time approximation schemes (PTASs) which are based on sum of squares (SOS) relaxation hierarchy and grid sampling of the standard simplex. For practical computational purposes, we propose the first order SOS relaxation, a convex quadratic SDP relaxation, and a simple minimum eigenvalue method and show their error bounds. Some illustrative numerical examples are also included.(ProQuest: ... denotes formulae/symbols omitted.)
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/080729104