ECG Signal Denoising Method Based on Disentangled Autoencoder

The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 12; no. 7; p. 1606
Main Authors: Lin, Haicai, Liu, Ruixia, Liu, Zhaoyang
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2023
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a method for denoising ECG based on disentangled autoencoders. A disentangled autoencoder is an improved autoencoder suitable for denoising ECG data. In our proposed method, we use a disentangled autoencoder model based on a fully convolutional neural network to effectively separate the clean ECG data from the noise. Unlike conventional autoencoders, we disentangle the features of the coding hidden layer to separate the signal-coding features from the noise-coding features. We performed simulation experiments on the MIT-BIH Arrhythmia Database and found that the algorithm had better noise reduction results when dealing with four different types of noise. In particular, using our method, the average improved signal-to-noise ratios for the three noises in the MIT-BIH Noise Stress Test Database were 27.45 db for baseline wander, 25.72 db for muscle artefacts, and 29.91 db for electrode motion artefacts. Compared to a denoising autoencoder based on a fully convolutional neural network (FCN), the signal-to-noise ratio was improved by an average of 12.57%. We can conclude that the model has scientific validity. At the same time, our noise reduction method can effectively remove noise while preserving the important information conveyed by the original signal.
AbstractList The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are usually disturbed by various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this study proposes a method for denoising ECG based on disentangled autoencoders. A disentangled autoencoder is an improved autoencoder suitable for denoising ECG data. In our proposed method, we use a disentangled autoencoder model based on a fully convolutional neural network to effectively separate the clean ECG data from the noise. Unlike conventional autoencoders, we disentangle the features of the coding hidden layer to separate the signal-coding features from the noise-coding features. We performed simulation experiments on the MIT-BIH Arrhythmia Database and found that the algorithm had better noise reduction results when dealing with four different types of noise. In particular, using our method, the average improved signal-to-noise ratios for the three noises in the MIT-BIH Noise Stress Test Database were 27.45 db for baseline wander, 25.72 db for muscle artefacts, and 29.91 db for electrode motion artefacts. Compared to a denoising autoencoder based on a fully convolutional neural network (FCN), the signal-to-noise ratio was improved by an average of 12.57%. We can conclude that the model has scientific validity. At the same time, our noise reduction method can effectively remove noise while preserving the important information conveyed by the original signal.
Audience Academic
Author Lin, Haicai
Liu, Ruixia
Liu, Zhaoyang
Author_xml – sequence: 1
  givenname: Haicai
  orcidid: 0009-0007-7365-4186
  surname: Lin
  fullname: Lin, Haicai
– sequence: 2
  givenname: Ruixia
  orcidid: 0000-0002-4044-5384
  surname: Liu
  fullname: Liu, Ruixia
– sequence: 3
  givenname: Zhaoyang
  surname: Liu
  fullname: Liu, Zhaoyang
BookMark eNp9kUtLAzEQx4NUsNZ-Ai8LnlfzaPM4eKhtrULFg3oOaTZZU7ZJTdKD395IBR8UZw7z4P8bhplT0PPBGwDOEbwkRMAr0xmdY_BOJ4QhQxTSI9AvmagFFrj3Iz8Bw5TWsJhAhBPYB9fz6aJ6cq1XXTUzPrjkfFs9mPwamupGJdNUwVczl4zPyrddqSe7HIzXoTHxDBxb1SUz_IoD8HI7f57e1cvHxf10sqw14SLXRgtFtEGKMGwpYpRopawaYy0Y4rqhljeK6bLgWDA44pDoFaScN3hFFLSKDMDFfu42hredSVmuwy6WnZPETAiKEaL8W9WqzkjnbchR6Y1LWk7YiApMR0wU1eUBVfHGbJwup7Wu9H8BYg_oGFKKxkrtssou-AK6TiIoP_8gD_yhsOQPu41uo-L7v9QHGNePUw
CitedBy_id crossref_primary_10_1109_TCSI_2025_3533544
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_47164_ijngc_v15i3_1773
crossref_primary_10_3390_a18040236
crossref_primary_10_1007_s10470_024_02277_w
crossref_primary_10_1088_2631_8695_adede3
crossref_primary_10_1016_j_ascom_2024_100886
Cites_doi 10.37896/YMER21.08/36
10.1109/ICCIC.2010.5705839
10.1016/j.bspc.2018.05.002
10.1109/ACCESS.2021.3072640
10.14257/ijbsbt.2016.8.4.05
10.1016/j.engappai.2016.02.015
10.1109/ICASSP.2017.7953017
10.3991/ijoe.v16i09.14485
10.1016/j.measurement.2018.05.033
10.22489/CinC.2019.015
10.3390/app12178839
10.1109/SMC.2014.6974120
10.1049/htl.2015.0029
10.1088/0967-3334/26/5/R01
10.1016/j.jacc.2020.11.010
10.1109/TCBB.2020.2976981
10.1109/ACCESS.2019.2912036
10.1016/j.irbm.2013.07.012
10.1109/JSEN.2013.2257742
10.1016/j.bspc.2013.06.005
10.1038/s41598-018-35053-8
10.1038/s41598-019-42516-z
10.1109/FABS52071.2021.9702655
10.1016/j.jelectrocard.2003.09.038
10.1088/0967-3334/37/12/2093
10.1016/j.probengmech.2015.10.005
10.1007/BF02351029
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12071606
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A746926479
10_3390_electronics12071606
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-ec9a3ce1a372f61763caafa52c9718cd6f8da7c29259704803cb0688d2b3a0fa3
IEDL.DBID P5Z
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970164300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 08:48:45 EST 2025
Tue Nov 11 11:13:37 EST 2025
Tue Nov 04 18:32:37 EST 2025
Tue Nov 18 20:58:03 EST 2025
Sat Nov 29 07:10:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-ec9a3ce1a372f61763caafa52c9718cd6f8da7c29259704803cb0688d2b3a0fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-7365-4186
0000-0002-4044-5384
OpenAccessLink https://www.proquest.com/docview/2799621168?pq-origsite=%requestingapplication%
PQID 2799621168
PQPubID 2032404
ParticipantIDs proquest_journals_2799621168
gale_infotracmisc_A746926479
gale_infotracacademiconefile_A746926479
crossref_citationtrail_10_3390_electronics12071606
crossref_primary_10_3390_electronics12071606
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ning (ref_20) 2013; 8
Fan (ref_33) 2016; 43
Syed (ref_3) 2005; 43
Tan (ref_17) 2021; 45
ref_36
ref_12
Roth (ref_1) 2020; 76
Costa (ref_29) 2003; 36
ref_32
ref_31
Sun (ref_34) 2018; 8
Bengio (ref_28) 2014; 35
Sarangi (ref_6) 2022; 21
Sharma (ref_10) 2018; 45
ref_16
Hammad (ref_5) 2018; 125
Singh (ref_26) 2021; 18
Goel (ref_14) 2016; 8
Zhou (ref_19) 2016; 37
Das (ref_18) 2013; 34
Xiong (ref_22) 2016; 52
ref_25
ref_24
ref_23
Bing (ref_15) 2021; 9
ref_21
Chiang (ref_30) 2019; 7
Labate (ref_11) 2013; 13
Addison (ref_13) 2005; 26
Zhu (ref_27) 2019; 9
Moridani (ref_2) 2020; 16
Gupta (ref_9) 2015; 2
Duchi (ref_35) 2011; 12
ref_8
ref_4
ref_7
References_xml – volume: 21
  start-page: 400
  year: 2022
  ident: ref_6
  article-title: Singular Spectrum Analysis Based EMG Artifact Removal from ECG Signal
  publication-title: YMER Digit.
  doi: 10.37896/YMER21.08/36
– ident: ref_16
  doi: 10.1109/ICCIC.2010.5705839
– ident: ref_32
– volume: 45
  start-page: 33
  year: 2018
  ident: ref_10
  article-title: Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.05.002
– volume: 9
  start-page: 56699
  year: 2021
  ident: ref_15
  article-title: DeepCEDNet: An Efficient Deep Convolutional Encoder-Decoder Networks for ECG Signal Enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072640
– ident: ref_24
– volume: 8
  start-page: 39
  year: 2016
  ident: ref_14
  article-title: An Optimal Wavelet Approach for ECG Noise Cancellation
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2016.8.4.05
– volume: 52
  start-page: 194
  year: 2016
  ident: ref_22
  article-title: ECG signal enhancement based on improved denoising auto-encoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.02.015
– ident: ref_21
  doi: 10.1109/ICASSP.2017.7953017
– volume: 16
  start-page: 137
  year: 2020
  ident: ref_2
  article-title: A Review of the Methods for Sudden Cardiac Death Detection: A Guide for Emergency Physicians
  publication-title: Int. J. Online Biomed. Eng.
  doi: 10.3991/ijoe.v16i09.14485
– volume: 125
  start-page: 634
  year: 2018
  ident: ref_5
  article-title: Detection of abnormal heart conditions based on characteristics of ECG signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.033
– ident: ref_23
  doi: 10.22489/CinC.2019.015
– ident: ref_8
  doi: 10.3390/app12178839
– ident: ref_7
  doi: 10.1109/SMC.2014.6974120
– volume: 2
  start-page: 164
  year: 2015
  ident: ref_9
  article-title: Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition
  publication-title: Health Technol. Lett.
  doi: 10.1049/htl.2015.0029
– volume: 26
  start-page: R155
  year: 2005
  ident: ref_13
  article-title: Wavelet transforms and the ECG: A review
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/5/R01
– volume: 76
  start-page: 2982
  year: 2020
  ident: ref_1
  article-title: Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.11.010
– volume: 18
  start-page: 759
  year: 2021
  ident: ref_26
  article-title: A New ECG Denoising Framework Using Generative Adversarial Network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.2976981
– volume: 45
  start-page: 1
  year: 2021
  ident: ref_17
  article-title: Application of improved wavelet threshold in ECG signal de-noising
  publication-title: Chin. J. Med. Devices
– volume: 7
  start-page: 60806
  year: 2019
  ident: ref_30
  article-title: Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912036
– ident: ref_4
– ident: ref_31
– ident: ref_12
– volume: 34
  start-page: 362
  year: 2013
  ident: ref_18
  article-title: Analysis of ECG signal denoising method based on S-transform
  publication-title: IRBM
  doi: 10.1016/j.irbm.2013.07.012
– volume: 13
  start-page: 2666
  year: 2013
  ident: ref_11
  article-title: Empirical Mode Decomposition vs. Wavelet Decomposition for the Extraction of Respiratory Signal from Single-Channel ECG: A Comparison
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2257742
– volume: 8
  start-page: 713
  year: 2013
  ident: ref_20
  article-title: ECG Enhancement and QRS Detection Based on Sparse Derivatives
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2013.06.005
– volume: 35
  start-page: 1798
  year: 2014
  ident: ref_28
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: arXiv
– volume: 8
  start-page: 17211
  year: 2018
  ident: ref_34
  article-title: Root Mean Square Minimum Distance as a Quality Metric for Stochastic Optical Localization Nanoscopy Images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35053-8
– volume: 9
  start-page: 6734
  year: 2019
  ident: ref_27
  article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42516-z
– ident: ref_25
  doi: 10.1109/FABS52071.2021.9702655
– volume: 36
  start-page: 139
  year: 2003
  ident: ref_29
  article-title: PhysioNet: An NIH research resource for complex signals
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2003.09.038
– ident: ref_36
– volume: 37
  start-page: 2093
  year: 2016
  ident: ref_19
  article-title: Sparse representation-based ECG signal enhancement and QRS detection
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2093
– volume: 43
  start-page: 50
  year: 2016
  ident: ref_33
  article-title: Adaptive estimation of statistical moments of the responses of random systems
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2015.10.005
– volume: 43
  start-page: 561
  year: 2005
  ident: ref_3
  article-title: Atrial cell action potential parameter fitting using genetic algorithms
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02351029
– volume: 12
  start-page: 39
  year: 2011
  ident: ref_35
  article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
  publication-title: J. Mach. Learn. Res.
SSID ssj0000913830
Score 2.3353589
Snippet The electrocardiogram (ECG) is widely used in medicine because it can provide basic information about different types of heart disease. However, ECG data are...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1606
SubjectTerms Algorithms
Artificial neural networks
Cardiovascular disease
Coding
Deep learning
Diagnosis
Electrocardiogram
Electrocardiography
Electrodes
Heart
Heart diseases
Methods
Neural networks
Noise
Noise reduction
Scientific validity
Signal processing
Signal to noise ratio
Wavelet transforms
Title ECG Signal Denoising Method Based on Disentangled Autoencoder
URI https://www.proquest.com/docview/2799621168
Volume 12
WOSCitedRecordID wos000970164300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s60EPvsVqLTkIXgxNk-Z1EOlTBVuCD6hewmZ3UwolqX149Lc7k6YvKL14S7KbsGSyM_Ntdr4P4AaDgNACLUCQI5mKDq-iYhwXqhZKx0WIUQnKSaHwi93pON2u66ULbuN0W-XcJyaOWsSc1shLuo2ZOaIVy3kYfqukGkV_V1MJjQzkiCWBpBs882uxxkKcl46hzciGDET3paW2zLisY3S1SOloJSBtdstJrGkd_neUR3CQZplKdfZZHMOOjE5gf4V78BTum_VH5a3fo34NGcV9WjRQ2omgtFLD2CaUOFIa_aQ4KeoN8Lw6ncTEeynk6Aw-Ws33-pOaaimoHFOSiSq5ywwuy8yw9RCzFsvgjIXM1LmL0YkLK3QEs7nuIhyyqc7c4AHp0Qg9MJgWMuMcslEcyQtQOA9NIYXLERtWKswN8NBkllkOGJVE6XnQ5y_U5ynROOldDHwEHGQFf4MV8nC3uGk449nY3v2WLOXTLMRnc5YWE-AIic_Kr9oI-zHXs908FNZ64uzh681zQ_rp7B37Sytebm--gj2Sn5_t5ClAdjKaymvY5T-T_nhUhFyt2fFei5Bp_zaLyaeJ17zntvf5Bz8N7gs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BQKI9UJ5qCgUfQFywcHYd23tAVUqARHkoEiDByax31ygSsmkSivhT_Y2d8SOAhHLjwM3Wjlcrz3i-mfXOfAB7CALaiZwIkxwjbXR4ro04rm0nNoHAFMONalmhcNfv94PrazGYg39lLQwdqyx9Yuaodapoj_yI-RiZY7biBb8e_tjEGkV_V0sKjdwsOub5CVO28XG7ifrdZ-zs9PKkZResArZCcJ7YRgnJlalJ7rMY8dvjSspY1pkS6KeV9uJAS18xgYmBTxXXXEXEzKJZxKUTS47zzsOCS8ZegYVBuze4me7qUJfNgDt5eyPOhXP0wmYzrjHEc4-4lV5B4PtAkKHb2bfP9l5WYLmIo61GbvirMGeSNfj6qrviOhyfnpxbF8M7kmuaJB3StojVyyizrd-I3tpKE6s5zMqvkrt7vG88TlLq7KnNaAOuPmT9m1BJ0sR8B0upuK6NFgqzX9eVIsLLuvTqtUhS0RerAisVGKqilToxetyHmFKR1sN3tF6Fw-lDD3knkdniB2QZIfkZnFvJolwCV0gdu8KG73oCo1lfVGH7jST6B_V2uDScsPBP4_DFan7MHt6FpdZlrxt22_3OFnxhGOLl55a2oTIZPZqfsKj-Tobj0U7xKVhw-9FW9h9yGUjQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64IXpwF8e1B8WLZTrJdMlBZHQcFXUYUEG81DRJZUBanRkV_5q_zve6uIB48-CtpWkIzZf35UvfArCJJKCdyIlQ5Bhpo8Gr28jj2nZiEwiUGPWolgUKn_ntdnB9LTpD8FbGwpBbZWkTM0OtU0Vn5FXm484c1YoXVOPCLaLTbO09PNpUQYr-tJblNHKInJrXF5Rv_d2TJs71FmOtw8uDY7uoMGArJOqBbZSQXJma5D6Lkcs9rqSMpcuUQJuttBcHWvqKCRQJPkVfcxVRlRbNIi6dWHLsdxhGfdSY5E7YcW8-znco32bAnTzREefCqX7WtenXGDK7R1WWvpDhz5SQ8Vxr-j9_oRmYKnbXViNfDrMwZJI5mPySc3Eedg8PjqyL7h21a5ok7dJhiXWeFdK29pHTtZUmVrObBWUld_d433gapJTvU5veAlz9yfgXYSRJE7MEllKxq40WCjVxvS5FhJeu9NxaJCkUjFWAlZMZqiLBOtX5uA9RaBECwh8QUIGdj5ce8vwivzffJpSEZH2wbyWLIAocIeXxChsERdzj-qICq99aotVQ3x-XIAoLq9UPPxG0_PvjDRhHaIVnJ-3TFZhguO_LnZlWYWTQezJrMKaeB91-bz1bExbc_jXE3gGwblAz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Signal+Denoising+Method+Based+on+Disentangled+Autoencoder&rft.jtitle=Electronics+%28Basel%29&rft.au=Lin%2C+Haicai&rft.au=Liu%2C+Ruixia&rft.au=Liu%2C+Zhaoyang&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Felectronics12071606&rft.externalDocID=A746926479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon