Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network
•TgCNN is used for surrogate modeling of 3D subsurface flow problems.•Dynamic pressure estimation can be obtained given stochastic permeability fields.•Uncertainty quantification and inverse modeling tasks are studied.•TgCNN-based surrogate models show improved efficiency with high accuracy. We buil...
Gespeichert in:
| Veröffentlicht in: | Journal of hydrology (Amsterdam) Jg. 613; S. 128321 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2022
|
| Schlagworte: | |
| ISSN: | 0022-1694, 1879-2707 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!