DATNet: Dynamic Adaptive Transformer Network for SAR Image Denoising
Aiming at the problems of detail blurring and structural distortion caused by speckle noise, additive white noise and hybrid noise interference in synthetic aperture radar (SAR) images, this paper proposes a Dynamic Adaptive Transformer Network (DAT-Net) integrating a dynamic gated attention module...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 17; číslo 17; s. 3031 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2025
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Aiming at the problems of detail blurring and structural distortion caused by speckle noise, additive white noise and hybrid noise interference in synthetic aperture radar (SAR) images, this paper proposes a Dynamic Adaptive Transformer Network (DAT-Net) integrating a dynamic gated attention module and a frequency-domain multi-expert enhancement module for SAR image denoising. The proposed model leverages a multi-scale encoder–decoder framework, combining local convolutional feature extraction with global self-attention mechanisms to transcend the limitations of conventional approaches restricted to single noise types, thereby achieving adaptive suppression of multi-source noise contamination. Key innovations comprise the following: (1) A Dynamic Gated Attention Module (DGAM) employing dual-path feature embedding and dynamic thresholding mechanisms to precisely characterize noise spatial heterogeneity; (2) A Frequency-domain Multi-Expert Enhancement (FMEE) Module utilizing Fourier decomposition and expert network ensembles for collaborative optimization of high-frequency and low-frequency components; (3) Lightweight Multi-scale Convolution Blocks (MCB) enhancing cross-scale feature fusion capabilities. Experimental results demonstrate that DAT-Net achieves quantifiable performance enhancement in both simulated and real SAR environments. Compared with other denoising algorithms, the proposed methodology exhibits superior noise suppression across diverse noise scenarios while preserving intrinsic textural features. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2072-4292 2072-4292 |
| DOI: | 10.3390/rs17173031 |