A polynomial time approximation algorithm for the two-commodity splittable flow problem
We consider a generalization of the unsplittable maximum two-commodity flow problem on undirected graphs where each commodity can be split into a bounded number k i of equally-sized chunks that can be routed on different paths. We show that in contrast to the single-commodity case this problem is NP...
Uložené v:
| Vydané v: | Mathematical methods of operations research (Heidelberg, Germany) Ročník 77; číslo 3; s. 381 - 391 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2013
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-2994, 1432-5217 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider a generalization of the unsplittable maximum two-commodity flow problem on undirected graphs where each commodity
can be split into a bounded number
k
i
of equally-sized chunks that can be routed on different paths. We show that in contrast to the single-commodity case this problem is NP-hard, and hard to approximate to within a factor of
α
> 1/2. We present a polynomial time 1/2-approximation algorithm for the case of uniform chunk size over both commodities and show that for even
k
i
and a mild cut condition it can be modified to yield an exact method. The uniform case can be used to derive a 1/4-approximation for the maximum concurrent (
k
1
,
k
2
)-splittable flow without chunk size restrictions for fixed demand ratios. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1432-2994 1432-5217 |
| DOI: | 10.1007/s00186-012-0402-9 |