Guarding Polyominoes Under k-Hop Visibility
We study the Art Gallery Problem under k -hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most k . In this paper, we show tha...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 87; H. 4; S. 572 - 593 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the
Art Gallery Problem
under
k
-hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most
k
. In this paper, we show that the VC dimension of this problem is 3 in simple polyominoes, and 4 in polyominoes with holes. Furthermore, we provide a reduction from
Planar Monotone 3Sat
, thereby showing that the problem is
NP
-complete even in thin polyominoes (i.e., polyominoes that do not a contain a
2
×
2
block of cells). Complementarily, we present a linear-time 4-approximation algorithm for simple 2-thin polyominoes (which do not contain a
3
×
3
block of cells) for all
k
∈
N
. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-4617 1432-0541 1432-0541 |
| DOI: | 10.1007/s00453-024-01292-7 |