Stochastic simulation-based genetic algorithm for chance constraint programming problems with continuous random variables

In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 81; H. 9; S. 1069 - 1076
Hauptverfasser: Jana, R. K., Biswal, M. P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 01.09.2004
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we present a stochastic simulation-based genetic algorithm for solving chance constraint programming problems, where the random variables involved in the parameters follow any continuous distribution. Generally, deriving the deterministic equivalent of a chance constraint is very difficult due to complicated multivariate integration and is only possible if the random variables involved in the chance constraint follow some specific distribution such as normal, uniform, exponential and lognormal distribution. In the proposed method, the stochastic model is directly used. The feasibility of the chance constraints are checked using stochastic simulation, and the genetic algorithm is used to obtain the optimal solution. A numerical example is presented to prove the efficiency of the proposed method. E-mail: rabin@maths.iitkgp.ernet.in
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7160
1029-0265
DOI:10.1080/03057920412331272144