Adaptive Morphological Reconstruction for Seeded Image Segmentation

Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 28; H. 11; S. 5510 - 5523
Hauptverfasser: Tao Lei, Xiaohong Jia, Tongliang Liu, Shigang Liu, Hongying Meng, Nandi, Asoke K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.
AbstractList Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.
Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.
Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to filter seeds (regional minima) to reduce over-segmentation. However, MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. Firstly, AMR can adaptively filter useless seeds while preserving meaningful ones. Secondly, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that AMR is useful for improving algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.
Author Nandi, Asoke K.
Tongliang Liu
Shigang Liu
Hongying Meng
Xiaohong Jia
Tao Lei
Author_xml – sequence: 1
  surname: Tao Lei
  fullname: Tao Lei
  email: leitao@sust.edu.cn
  organization: Sch. of Electron. Inf. & Artificial Intell., Shaanxi Univ. of Sci. & Technol., Xi'an, China
– sequence: 2
  surname: Xiaohong Jia
  fullname: Xiaohong Jia
  email: jiaxhsust@163.com
  organization: Sch. of Electr. & Control Eng., Shaanxi Univ. of Sci. & Technol., Xi'an, China
– sequence: 3
  surname: Tongliang Liu
  fullname: Tongliang Liu
  email: tongliang.liu@sydney.edu.au
  organization: Sch. of Comput. Sci., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 4
  surname: Shigang Liu
  fullname: Shigang Liu
  email: shgliu@gmail.com
  organization: Sch. of Comput. Sci., Shaanxi Normal Univ., Xi'an, China
– sequence: 5
  surname: Hongying Meng
  fullname: Hongying Meng
  email: hongying.meng@brunel.ac.uk
  organization: Dept. of Electron. & Comput. Eng., Brunel Univ. London, Uxbridge, UK
– sequence: 6
  givenname: Asoke K.
  surname: Nandi
  fullname: Nandi, Asoke K.
  email: asoke.nandi@brunel.ac.uk
  organization: Dept. of Electron. & Comput. Eng., Brunel Univ. London, Uxbridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31180855$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaD7ae6FQDL3k4u3oy5KOYWmShZSUNj0LWRpvHWxrK9mF_vtq2U0POfQ0M8zzDjPzXpCTKU5IyDsKK0rBfHrcfF0xoGbFDANJxStyTo2gNYBgJyUHqWpFhTkjFzk_AVAhafOanHFKNWgpz8n6Orjd3P_G6ktMu59xiNveu6H6hj5OeU6Ln_s4VV1M1XfEgKHajG6LpdiOOM1u331DTjs3ZHx7jJfkx83nx_Vdff9wu1lf39eeazPXjrUstK7plOBacOAKmcTOUwe0Bc-CDh0w5gx474MQEKTpWpCyVSZQ2fFLcnWYu0vx14J5tmOfPQ6DmzAu2TKmqRYNVaqgH1-gT3FJU9muUEpzU561pz4cqaUdMdhd6keX_tjn9xSgOQA-xZwTdtb3h5vn5PrBUrB7H2zxwe59sEcfihBeCJ9n_0fy_iDpEfEfrhXnDBr-F6PqkU8
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s10044_024_01228_5
crossref_primary_10_3390_rs14153651
crossref_primary_10_1109_TFUZZ_2020_3029296
crossref_primary_10_1109_ACCESS_2020_3039742
crossref_primary_10_1016_j_engappai_2023_107212
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1109_ACCESS_2020_2980885
crossref_primary_10_3390_agriengineering5030088
crossref_primary_10_1016_j_dsp_2021_103036
crossref_primary_10_1109_TFUZZ_2019_2930030
crossref_primary_10_1109_TPAMI_2020_2974475
crossref_primary_10_1177_0954407020969502
crossref_primary_10_1007_s00530_024_01578_4
crossref_primary_10_1016_j_eswa_2024_125431
crossref_primary_10_1109_TAES_2022_3147435
crossref_primary_10_1038_s41598_024_73335_6
crossref_primary_10_3390_app14041649
crossref_primary_10_1016_j_measurement_2022_111665
crossref_primary_10_3390_s23020560
crossref_primary_10_1016_j_eswa_2022_118971
crossref_primary_10_1109_TFUZZ_2022_3220925
crossref_primary_10_1109_JAS_2020_1003420
crossref_primary_10_1007_s00034_024_02704_3
crossref_primary_10_1109_ACCESS_2022_3183901
crossref_primary_10_1080_10106049_2022_2038694
crossref_primary_10_1016_j_imavis_2021_104310
crossref_primary_10_1109_ACCESS_2024_3430973
crossref_primary_10_1007_s00500_023_08844_z
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_1109_TGRS_2022_3168126
crossref_primary_10_1049_ipr2_12230
crossref_primary_10_1109_TFUZZ_2021_3099560
crossref_primary_10_3390_mi13040546
crossref_primary_10_1109_TIM_2025_3573369
crossref_primary_10_1002_jemt_24300
crossref_primary_10_1109_ACCESS_2020_3015270
crossref_primary_10_1016_j_future_2020_07_045
crossref_primary_10_1016_j_neucom_2022_12_003
crossref_primary_10_1109_TMM_2024_3360689
crossref_primary_10_3390_s23167309
crossref_primary_10_1016_j_jappgeo_2025_105690
crossref_primary_10_3390_electronics9030383
crossref_primary_10_1007_s11042_022_13259_3
crossref_primary_10_1109_LSP_2025_3559425
crossref_primary_10_1016_j_patcog_2023_110027
crossref_primary_10_1109_ACCESS_2020_3024718
crossref_primary_10_1109_TFUZZ_2020_3029285
crossref_primary_10_1016_j_neucom_2019_05_103
crossref_primary_10_1016_j_apacoust_2023_109341
crossref_primary_10_3389_fpls_2022_730190
crossref_primary_10_1007_s12145_025_01946_2
crossref_primary_10_1080_19392699_2022_2074409
crossref_primary_10_1007_s40815_025_02017_w
crossref_primary_10_1016_j_eswa_2023_120419
crossref_primary_10_1007_s00500_023_09533_7
crossref_primary_10_1007_s00521_023_08279_5
crossref_primary_10_1109_TIM_2022_3192275
crossref_primary_10_1109_ACCESS_2020_3016895
crossref_primary_10_1109_TMM_2021_3053393
Cites_doi 10.1109/TIE.2017.2650873
10.1109/TGRS.2002.804618
10.1109/TIP.2015.2397313
10.1109/TIP.2011.2157512
10.1016/j.ins.2017.01.003
10.1109/TPAMI.2016.2544311
10.1109/TBME.2014.2325410
10.1109/CVPR.2016.46
10.1109/TBME.2010.2097599
10.1109/TPAMI.2016.2537320
10.1109/JSTARS.2015.2468593
10.1109/CVPR.2015.7298782
10.1007/s11263-006-7934-5
10.1109/TPAMI.2006.233
10.1109/JSTQE.2017.2649461
10.1109/JSTARS.2012.2190045
10.1109/TMI.2006.879955
10.1007/s11263-010-0400-4
10.1109/ICCV.2015.179
10.1109/34.1000236
10.1109/34.546254
10.1109/TIP.2016.2586658
10.1109/CVPR.2014.14
10.1109/TPAMI.2016.2554550
10.1109/TGRS.2018.2849443
10.1016/j.ymssp.2016.07.009
10.1109/TMI.2004.824224
10.1016/S0031-3203(97)00015-0
10.1109/CVPR.2005.332
10.1109/TPAMI.2012.120
10.1016/j.patcog.2016.12.027
10.1109/TFUZZ.2018.2796074
10.1109/TIP.2018.2836300
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2010.161
10.1109/TPAMI.2014.2377715
10.1007/978-3-319-46448-0_36
10.1016/j.patcog.2018.01.037
10.1109/TBME.2015.2403295
10.1109/TGRS.2015.2488280
10.1109/TPAMI.2010.200
10.1109/TIP.2011.2166558
10.1109/83.217222
10.1109/ICCV.2015.189
10.1109/TPAMI.2014.2303095
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00733
10.1109/CVPR.2014.56
10.1109/34.87344
10.1109/TITB.2010.2087030
10.1109/TBME.2008.2008635
10.1109/TIP.2017.2651389
10.1109/TPAMI.2012.237
10.1109/TIP.2017.2651395
10.1109/WACV.2018.00165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2019.2920514
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1941-0042
EndPage 5523
ExternalDocumentID 31180855
10_1109_TIP_2019_2920514
8733206
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61461025; 61871259; 61811530325
  funderid: 10.13039/501100001809
– fundername: Royal Society
  grantid: 61871260; 61672333; 61873155
  funderid: 10.13039/501100000288
– fundername: National Key R&D Program of China
  grantid: 2017YFB1402102
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M602856
  funderid: 10.13039/501100002858
– fundername: Australian Research Council
  grantid: DP-180103424; DE-1901014738
  funderid: 10.13039/501100000923
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c389t-a2b2dba6f743843037e25efc1a01b0c2d8df022a90cccd440d59fb055b79d15f3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482600600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Mon Sep 29 05:42:41 EDT 2025
Mon Jun 30 10:13:30 EDT 2025
Thu Apr 03 07:02:52 EDT 2025
Sat Nov 29 03:21:10 EST 2025
Tue Nov 18 22:11:36 EST 2025
Wed Aug 27 08:34:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-a2b2dba6f743843037e25efc1a01b0c2d8df022a90cccd440d59fb055b79d15f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8836-1382
0000-0002-2104-9298
0000-0002-9640-6472
0000-0001-6248-2875
OpenAccessLink https://ieeexplore.ieee.org/document/8733206
PMID 31180855
PQID 2278395147
PQPubID 85429
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIP_2019_2920514
ieee_primary_8733206
pubmed_primary_31180855
crossref_primary_10_1109_TIP_2019_2920514
proquest_miscellaneous_2281846177
proquest_journals_2278395147
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
kim (ref39) 2013; 35
ref59
ref15
ref58
ref53
ref52
ref55
ref11
ref54
ref10
ref17
soille (ref25) 2013
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ng (ref20) 2002
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref24
ref23
ref26
ref22
ref28
ref27
serra (ref21) 1988; 2
ref29
bosch (ref14) 2018
References_xml – ident: ref28
  doi: 10.1109/TIE.2017.2650873
– ident: ref23
  doi: 10.1109/TGRS.2002.804618
– ident: ref55
  doi: 10.1109/TIP.2015.2397313
– ident: ref13
  doi: 10.1109/TIP.2011.2157512
– ident: ref11
  doi: 10.1016/j.ins.2017.01.003
– ident: ref42
  doi: 10.1109/TPAMI.2016.2544311
– ident: ref35
  doi: 10.1109/TBME.2014.2325410
– ident: ref50
  doi: 10.1109/CVPR.2016.46
– ident: ref27
  doi: 10.1109/TBME.2010.2097599
– ident: ref49
  doi: 10.1109/TPAMI.2016.2537320
– ident: ref32
  doi: 10.1109/JSTARS.2015.2468593
– ident: ref17
  doi: 10.1109/CVPR.2015.7298782
– ident: ref33
  doi: 10.1007/s11263-006-7934-5
– ident: ref34
  doi: 10.1109/TPAMI.2006.233
– volume: 2
  year: 1988
  ident: ref21
  publication-title: Image Analysis and Mathematical Morphology Theoretical Advances
– ident: ref2
  doi: 10.1109/JSTQE.2017.2649461
– ident: ref4
  doi: 10.1109/JSTARS.2012.2190045
– ident: ref38
  doi: 10.1109/TMI.2006.879955
– ident: ref53
  doi: 10.1007/s11263-010-0400-4
– ident: ref57
  doi: 10.1109/ICCV.2015.179
– ident: ref19
  doi: 10.1109/34.1000236
– ident: ref36
  doi: 10.1109/34.546254
– ident: ref31
  doi: 10.1109/TIP.2016.2586658
– year: 2013
  ident: ref25
  publication-title: Morphological Image Analysis Principles and Applications
– ident: ref40
  doi: 10.1109/CVPR.2014.14
– ident: ref47
  doi: 10.1109/TPAMI.2016.2554550
– ident: ref41
  doi: 10.1109/TGRS.2018.2849443
– ident: ref29
  doi: 10.1016/j.ymssp.2016.07.009
– ident: ref37
  doi: 10.1109/TMI.2004.824224
– ident: ref26
  doi: 10.1016/S0031-3203(97)00015-0
– ident: ref52
  doi: 10.1109/CVPR.2005.332
– ident: ref43
  doi: 10.1109/TPAMI.2012.120
– ident: ref9
  doi: 10.1016/j.patcog.2016.12.027
– year: 2018
  ident: ref14
  article-title: Improved image segmentation via cost minimization of multiple hypotheses
  publication-title: arXiv 1802 00088
– ident: ref10
  doi: 10.1109/TFUZZ.2018.2796074
– ident: ref45
  doi: 10.1109/TIP.2018.2836300
– ident: ref59
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref15
  doi: 10.1109/TPAMI.2010.161
– ident: ref16
  doi: 10.1109/TPAMI.2014.2377715
– ident: ref58
  doi: 10.1007/978-3-319-46448-0_36
– ident: ref46
  doi: 10.1016/j.patcog.2018.01.037
– ident: ref3
  doi: 10.1109/TBME.2015.2403295
– ident: ref24
  doi: 10.1109/TGRS.2015.2488280
– ident: ref8
  doi: 10.1109/TPAMI.2010.200
– ident: ref30
  doi: 10.1109/TIP.2011.2166558
– ident: ref1
  doi: 10.1109/83.217222
– start-page: 849
  year: 2002
  ident: ref20
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref18
  doi: 10.1109/ICCV.2015.189
– ident: ref54
  doi: 10.1109/TPAMI.2014.2303095
– ident: ref56
  doi: 10.1109/CVPR.2015.7298965
– ident: ref5
  doi: 10.1109/CVPR.2018.00733
– ident: ref6
  doi: 10.1109/CVPR.2014.56
– ident: ref7
  doi: 10.1109/34.87344
– ident: ref22
  doi: 10.1109/TITB.2010.2087030
– ident: ref12
  doi: 10.1109/TBME.2008.2008635
– ident: ref44
  doi: 10.1109/TIP.2017.2651389
– volume: 35
  start-page: 1690
  year: 2013
  ident: ref39
  article-title: Learning full pairwise affinities for spectral segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.237
– ident: ref48
  doi: 10.1109/TIP.2017.2651395
– ident: ref51
  doi: 10.1109/WACV.2018.00165
SSID ssj0014516
Score 2.575695
Snippet Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to...
Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5510
SubjectTerms Algorithms
Computer science
Computing time
Convergence
Image edge detection
Image reconstruction
Image segmentation
Mathematical morphology
Morphology
seeded segmentation
Seeds
spectral segmentation
Transforms
Title Adaptive Morphological Reconstruction for Seeded Image Segmentation
URI https://ieeexplore.ieee.org/document/8733206
https://www.ncbi.nlm.nih.gov/pubmed/31180855
https://www.proquest.com/docview/2278395147
https://www.proquest.com/docview/2281846177
Volume 28
WOSCitedRecordID wos000482600600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9UfLAPvdavXquSgi-C8TbJbjb7KKJUsCKocG9hP0XQnPTO_v2dSTapgi34lmwmm2VnZue3mZ0ZgP3Seo16ZNOSBY0bFGZTUxU-RXCcGZ4bX_o2z-yFvLysplN1tQSHQyyM9749fOaP6LL15buZfaZfZZNKFkVO-bWXpZRdrNbgMaCCs61nU8hUIuzvXZJMTW7Or-gMlzqiykwi469MUFtT5d_wsjUzZ6P3DfATfIxwMjnu-P8ZlnyzDqMILZOouHNs6qs39G3r8OFFKsINODl2-omWvuTnDKe-XxIT2p7-TTKbIMRNrtHgYefnj7gU4c3dYwxfajbh9uz05uRHGgsspBZxyiLVucmd0WVAGFFxNGbS58IHm2mWGWZzV7mANl4rZq11nDMnVDBMCCOVy0QotmClmTX-CyS5yrQNwnOnGHclM8yhDLDgXKBe_Rgm_ZzXNmYfpyIYD3W7C2GqRi7VxKU6cmkMB8MbT13mjf_QbhAzBrrIhzHs9Gyto2rOa4r9LRBXcjmG78NjVCrylOjGz56JBnEMR3CHNNudOAx9F5Q0rxLi69vf_AZrNLIuXHEHVpBBfhdW7e_F_fzXHkrutNprJfcPFf7pkw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9EBeuDn9WetTVCXwTjbZLdJPsoUvHoeQi9gm9hP0XQnPS0f39nkk1sQQXfks1ks-zM7Pw2szMD8C03TqEemThnXuEGhZlYl5mLERwnmqfa5a7JMzsuJpPy-lpeLcBxHwvjnGsOn7kTumx8-XZmnuhX2bAssiyl_NpLgvM0aaO1ep8BlZxtfJuiiAsE_p1TksnhdHRFp7jkCdVmEgn_zwg1VVVeB5iNoTlff98QN2AtAMrotJWATVhw9RasB3AZBdWdY1NXv6Fr24LVf5IRbsPZqVUPtPhFlzOc_G5RjGiD-pxmNkKQG_1Ek4edj-5xMcKbm_sQwFR_hF_n36dnF3EosRAbRCqPsUp1arXKPQKJkqM5K1wqnDeJYolmJrWl9WjllWTGGMs5s0J6zYTQhbSJ8NkOLNaz2n2CKJWJMl44biXjNmeaWZQC5q311KsbwLCb88qE_ONUBuOuavYhTFbIpYq4VAUuDeCof-Ohzb3xBu02MaOnC3wYwH7H1ioo57yi6N8MkSUvBnDYP0a1Il-Jqt3siWgQyXCEd0iz24pD33dGafNKIfZe_uYBrFxML8fVeDT58Rk-0Cjb4MV9WERmuS-wbP483s5_f23k9y_efevy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Morphological+Reconstruction+for+Seeded+Image+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Lei%2C+Tao&rft.au=Jia%2C+Xiaohong&rft.au=Liu%2C+Tongliang&rft.au=Liu%2C+Shigang&rft.date=2019-11-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=28&rft.issue=11&rft.spage=5510&rft_id=info:doi/10.1109%2FTIP.2019.2920514&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon