Every Large Point Set contains Many Collinear Points or an Empty Pentagon

We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Graphs and combinatorics Ročník 27; číslo 1; s. 47 - 60
Hlavní autoři: Abel, Zachary, Ballinger, Brad, Bose, Prosenjit, Collette, Sébastien, Dujmović, Vida, Hurtado, Ferran, Kominers, Scott Duke, Langerman, Stefan, Pór, Attila, Wood, David R.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Japan Springer Japan 01.01.2011
Springer Nature B.V
Témata:
ISSN:0911-0119, 1435-5914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove the following generalised empty pentagon theorem for every integer ℓ  ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005].
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-010-0957-2