Every Large Point Set contains Many Collinear Points or an Empty Pentagon
We prove the following generalised empty pentagon theorem for every integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood...
Uloženo v:
| Vydáno v: | Graphs and combinatorics Ročník 27; číslo 1; s. 47 - 60 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Japan
Springer Japan
01.01.2011
Springer Nature B.V |
| Témata: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove the following generalised empty pentagon theorem for every integer
ℓ
≥ 2, every sufficiently large set of points in the plane contains
ℓ
collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005]. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-010-0957-2 |