Scalable importance tempering and Bayesian variable selection

We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 81; číslo 3; s. 489 - 517
Hlavní autori: Zanella, Giacomo, Roberts, Gareth
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley 01.07.2019
Oxford University Press
Predmet:
ISSN:1369-7412, 1467-9868
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable-selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.
AbstractList We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable-selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.
Summary We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable‐selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.
Author Zanella, Giacomo
Roberts, Gareth
Author_xml – sequence: 1
  givenname: Giacomo
  surname: Zanella
  fullname: Zanella, Giacomo
– sequence: 2
  givenname: Gareth
  surname: Roberts
  fullname: Roberts, Gareth
BookMark eNp9kE1LAzEQhoNUsK1evAsLXkTYukm2-Th4sMUvKAhWz8tsOpWUbbYmW6X_3rSrHoo4l8zheWYmb490XO2QkFOaDWisKx9COaCMU3FAujQXMtVKqE7sudCpzCk7Ir0QFlksIXmXXE8NVFBWmNjlqvYNOINJg8sVeuveEnCzZAQbDBZc8gHe7tCAFZrG1u6YHM6hCnjy_fbJ693ty_ghnTzdP45vJqnhSotUCUqz4RBzwwBKLUsljWLaMM0loNA5x9LgbDaEIWeocGa4iYSgABqZKHmfXLRzV75-X2NoiqUNBqsKHNbrUDCmhI4bhIro-R66qNfexesixRmTMsvzSF22lPF1CB7nxcrbJfhNQbNim2SxTbLYJRnhbA82toHt_xsPtvpboa3yaSvc_DO8eJ5ORz_OWessQlP7X4cJKePdlH8BqVeRhQ
CitedBy_id crossref_primary_10_1007_s11222_022_10137_8
crossref_primary_10_1007_s11222_025_10651_5
crossref_primary_10_1214_21_STS846
crossref_primary_10_1214_22_BA1351
crossref_primary_10_1214_25_BA1525
crossref_primary_10_3390_rs15082051
crossref_primary_10_1002_sta4_307
crossref_primary_10_1007_s11222_020_09974_2
crossref_primary_10_1080_01621459_2022_2099402
crossref_primary_10_1214_22_STS876
crossref_primary_10_1109_TSP_2023_3277220
crossref_primary_10_1371_journal_pgen_1010540
crossref_primary_10_1007_s11222_022_10180_5
crossref_primary_10_1080_01621459_2023_2257893
crossref_primary_10_1093_biomet_asaa055
crossref_primary_10_1111_rssb_12546
crossref_primary_10_1111_rssb_12466
crossref_primary_10_3390_e25091310
crossref_primary_10_1080_10618600_2022_2074428
crossref_primary_10_3934_fods_2024017
Cites_doi 10.1007/s11222-008-9108-5
10.1093/biomet/83.3.681
10.1016/0304-4149(94)90134-1
10.1111/1467-9469.00250
10.1080/01621459.2016.1222288
10.1111/1467-9868.00070
10.1214/15-AOS1417
10.1198/016214503388619193
10.1080/01621459.2017.1371025
10.1016/S0304-4076(00)00076-2
10.5539/ijsp.v5n1p51
10.1017/jpr.2016.9
10.1080/01621459.2015.1130634
10.1016/0304-4076(95)01763-1
10.1209/0295-5075/19/6/002
10.1007/978-1-4471-3267-7
10.1214/10-AOAS377
10.1080/01621459.2019.1585255
10.1214/08-AOS634
10.1093/biomet/82.3.479
10.1016/j.ccr.2012.08.013
10.1214/17-AAP1358
10.1080/01621459.2012.682536
10.1080/01621459.1995.10476590
ContentType Journal Article
Copyright 2019 Royal Statistical Society
Copyright © 2019 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: 2019 Royal Statistical Society
– notice: Copyright © 2019 The Royal Statistical Society and Blackwell Publishing Ltd
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12316
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

International Bibliography of the Social Sciences (IBSS)
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 517
ExternalDocumentID 10_1111_rssb_12316
RSSB12316
26773221
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/K014463/1; EP/K034154/1
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AHQJS
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AAHHS
AANHP
AARHZ
ABPQH
ABYAD
ACBWZ
ACCFJ
ACFRR
ACRPL
ACTWD
ACYXJ
ADNMO
ADQBN
ADULT
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ANFBD
AS~
ATGXG
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
JSODD
NHB
RJQFR
ZGI
AAYXX
ABEJV
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c3896-8611055e4c2aab97b87c829c2937ae6943ebcedd5a532e8edc3c7c861aa9e26b3
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470714200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:09:56 EDT 2025
Mon Nov 10 03:22:51 EST 2025
Sat Nov 29 05:52:11 EST 2025
Tue Nov 18 22:13:57 EST 2025
Wed Jan 22 16:20:30 EST 2025
Thu Jul 03 21:54:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3896-8611055e4c2aab97b87c829c2937ae6943ebcedd5a532e8edc3c7c861aa9e26b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2232277044
PQPubID 39359
PageCount 29
ParticipantIDs proquest_miscellaneous_2286905568
proquest_journals_2232277044
crossref_primary_10_1111_rssb_12316
crossref_citationtrail_10_1111_rssb_12316
wiley_primary_10_1111_rssb_12316_RSSB12316
jstor_primary_26773221
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2019
Publisher Wiley
Oxford University Press
Publisher_xml – name: Wiley
– name: Oxford University Press
References 2001; 100
2018; 28
2015; 5
1995; 90
2016; 53
1992; 19
1994; 49
1993
2001; 28
2013; 8
2017; 112
2011; 5
2012; 107
2003; 98
1996; 75
2018; 19
2016; 6
2010; 20
1995; 82
2001
1997; 59
2018; 113
1996; 83
2019
1986
2018
2017
2016
1992; 46
2013
2012; 22
2009; 37
1994; 4
1992; 4
2016; 44
Roberts (2023022002403153400_) 2015; 5
Rosenthal (2023022002403153400_) 2003; 98
Chimisov (2023022002403153400_) 2018
Chipman (2023022002403153400_) 2001
Yuan (2023022002403153400_) 2016; 6
Smith (2023022002403153400_) 1992; 46
Calon (2023022002403153400_) 2012; 22
Gramacy (2023022002403153400_) 2010; 20
Huang (2023022002403153400_) 2016
Rossell (2023022002403153400_) 2018; 113
Roberts (2023022002403153400_) 1994; 49
Deligiannidis (2023022002403153400_) 2018; 28
Marinari (2023022002403153400_) 1992; 19
Zanella (2023022002403153400_) 2017
Roberts (2023022002403153400_) 2001; 28
Roberts (2023022002403153400_) 2016; 53
Zanella (2023022002403153400_) 2019
Geyer (2023022002403153400_) 1995; 90
Papaspiliopoulos (2023022002403153400_) 2018
Roberts (2023022002403153400_) 1997; 59
Hills (2023022002403153400_) 1992; 4
Zellner (2023022002403153400_) 1986
Rossell (2023022002403153400_) 2017; 112
Liu (2023022002403153400_) 1996; 83
Belloni (2023022002403153400_) 2009; 37
Johnson (2023022002403153400_) 2012; 107
Wang (2023022002403153400_) 2011; 5
Yang (2023022002403153400_) 2016; 44
Gelfand (2023022002403153400_) 1995; 82
R Core Team (2023022002403153400_) 2017
Duan (2023022002403153400_) 2018; 19
Smith (2023022002403153400_) 1996; 75
Titsias (2023022002403153400_) 2017; 112
Meyn (2023022002403153400_) 1993
Frieze (2023022002403153400_) 1994; 4
Fernandez (2023022002403153400_) 2001; 100
Owen (2023022002403153400_) 2013
Johnson (2023022002403153400_) 2013; 8
References_xml – volume: 8
  start-page: 741
  year: 2013
  end-page: 758
  article-title: On numerical aspects of Bayesian model selection in high and ultrahigh‐dimensional settings
  publication-title: Baysn Anal.
– volume: 28
  start-page: 2309
  year: 2018
  end-page: 2334
  article-title: Which ergodic averages have finite asymptotic variance?
  publication-title: Ann. Appl. Probab.
– volume: 59
  start-page: 291
  year: 1997
  end-page: 317
  article-title: Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler
  publication-title: J. R. Statist. Soc.
– volume: 46
  start-page: 84
  year: 1992
  end-page: 88
  article-title: Bayesian statistics without tears: a sampling–resampling perspective
  publication-title: Am. Statistn
– volume: 75
  start-page: 317
  year: 1996
  end-page: 343
  article-title: Nonparametric regression using Bayesian variable selection
  publication-title: J. Econmetr.
– volume: 107
  start-page: 649
  year: 2012
  end-page: 660
  article-title: Bayesian model selection in high‐dimensional settings
  publication-title: J. Am. Statist. Ass.
– volume: 49
  start-page: 207
  year: 1994
  end-page: 216
  article-title: Simple conditions for the convergence of the Gibbs sampler and Metropolis‐Hastings algorithms
  publication-title: Stoch. Processes Appl.
– volume: 112
  start-page: 1598
  year: 2017
  end-page: 1611
  article-title: The Hamming ball sampler
  publication-title: J. Am. Statist. Ass.
– volume: 37
  start-page: 2011
  year: 2009
  end-page: 2055
  article-title: On the computational complexity of MCMC‐based estimators in large samples
  publication-title: Ann. Statist.
– volume: 98
  start-page: 169
  year: 2003
  end-page: 177
  article-title: Asymptotic variance and convergence rates of nearly‐periodic Markov chain Monte Carlo algorithms
  publication-title: J. Am. Statist. Ass.
– year: 2019
  article-title: Informed proposals for local MCMC in discrete spaces
  publication-title: J. Am. Statist. Ass.
– volume: 90
  start-page: 909
  year: 1995
  end-page: 920
  article-title: Annealing Markov chain Monte Carlo with applications to ancestral inference
  publication-title: J. Am. Statist. Ass.
– volume: 6
  start-page: 19413
  year: 2016
  article-title: Plasma extracellular RNA profiles in healthy and cancer patients
  publication-title: Scient. Rep.
– year: 2016
– start-page: 233
  year: 1986
  end-page: 243
– year: 2018
– start-page: 65
  year: 2001
  end-page: 116
– volume: 4
  start-page: 227
  year: 1992
  end-page: 246
  article-title: Parameterization issues in Bayesian inference
  publication-title: Baysn Statist.
– volume: 5
  start-page: 468
  year: 2011
  end-page: 485
  article-title: Random lasso
  publication-title: Ann. Appl. Statist.
– volume: 4
  start-page: 812
  year: 1994
  end-page: 837
  article-title: Sampling from log‐concave distributions
  publication-title: Ann. Appl. Probab.
– volume: 82
  start-page: 479
  year: 1995
  end-page: 488
  article-title: Efficient parametrisations for normal linear mixed models
  publication-title: Biometrika
– volume: 19
  start-page: 2575
  year: 2018
  end-page: 2608
  article-title: Scaling up data augmentation MCMC via calibration
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 451
  year: 1992
  end-page: 458
  article-title: Simulated tempering: a new Monte Carlo scheme
  publication-title: Eurphys. Lett.
– volume: 113
  start-page: 1742
  year: 2018
  end-page: 1758
  article-title: Tractable Bayesian variable selection: beyond normality
  publication-title: J. Am. Statist. Ass.
– volume: 83
  start-page: 681
  year: 1996
  end-page: 682
  article-title: Peskun's theorem and a modified discrete‐state Gibbs sampler
  publication-title: Biometrika
– volume: 28
  start-page: 489
  year: 2001
  end-page: 504
  article-title: Markov chains and de‐initializing processes
  publication-title: Scand. J. Statist.
– volume: 44
  start-page: 2497
  year: 2016
  end-page: 2532
  article-title: On the computational complexity of high‐dimensional Bayesian variable selection
  publication-title: Ann. Statist.
– volume: 112
  start-page: 254
  year: 2017
  end-page: 265
  article-title: Nonlocal priors for high‐dimensional estimation
  publication-title: J. Am. Statist. Ass.
– year: 2017
– volume: 22
  start-page: 571
  year: 2012
  end-page: 584
  article-title: Dependency of colorectal cancer on a TGF‐ ‐driven program in stromal cells for metastasis initiation
  publication-title: Cancer Cell
– volume: 20
  start-page: 1
  year: 2010
  end-page: 7
  article-title: Importance tempering
  publication-title: Statist. Comput.
– volume: 53
  start-page: 410
  year: 2016
  end-page: 420
  article-title: Complexity bounds for Markov chain Monte Carlo algorithms via diffusion limits
  publication-title: J. Appl. Probab.
– year: 1993
– volume: 5
  start-page: 51
  year: 2015
  end-page: 60
  article-title: Surprising convergence properties of some simple Gibbs samplers under various scans
  publication-title: Int. J. Statist. Probab.
– volume: 100
  start-page: 381
  year: 2001
  end-page: 427
  article-title: Benchmark priors for Bayesian model averaging
  publication-title: J. Econmetr.
– year: 2013
– volume-title: Analysis of the Gibbs Sampler for Gaussian hierarchical models via multigrid decomposition
  year: 2017
  ident: 2023022002403153400_
– volume: 19
  start-page: 2575
  year: 2018
  ident: 2023022002403153400_
  article-title: Scaling up data augmentation MCMC via calibration
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  year: 2010
  ident: 2023022002403153400_
  article-title: Importance tempering
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-008-9108-5
– volume: 83
  start-page: 681
  year: 1996
  ident: 2023022002403153400_
  article-title: Peskun’s theorem and a modified discrete-state Gibbs sampler
  publication-title: Biometrika
  doi: 10.1093/biomet/83.3.681
– volume: 49
  start-page: 207
  year: 1994
  ident: 2023022002403153400_
  article-title: Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms
  publication-title: Stoch. Processes Appl.
  doi: 10.1016/0304-4149(94)90134-1
– start-page: 65
  volume-title: The Practical Implementation of Bayesian Model Selection
  year: 2001
  ident: 2023022002403153400_
– volume-title: A variational algorithm for Bayesian variable selection
  year: 2016
  ident: 2023022002403153400_
– volume: 28
  start-page: 489
  year: 2001
  ident: 2023022002403153400_
  article-title: Markov chains and de-initializing processes
  publication-title: Scand. J. Statist.
  doi: 10.1111/1467-9469.00250
– volume: 4
  start-page: 227
  year: 1992
  ident: 2023022002403153400_
  article-title: Parameterization issues in Bayesian inference
  publication-title: Baysn Statist.
– volume-title: R: a Language and Environment for Statistical Computing
  year: 2017
  ident: 2023022002403153400_
– volume: 112
  start-page: 1598
  year: 2017
  ident: 2023022002403153400_
  article-title: The Hamming ball sampler
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2016.1222288
– volume: 59
  start-page: 291
  year: 1997
  ident: 2023022002403153400_
  article-title: Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00070
– volume: 46
  start-page: 84
  year: 1992
  ident: 2023022002403153400_
  article-title: Bayesian statistics without tears: a sampling–resampling perspective
  publication-title: Am. Statistn
– volume: 44
  start-page: 2497
  year: 2016
  ident: 2023022002403153400_
  article-title: On the computational complexity of high-dimensional Bayesian variable selection
  publication-title: Ann. Statist.
  doi: 10.1214/15-AOS1417
– volume-title: Adapting the Gibbs sampler
  year: 2018
  ident: 2023022002403153400_
– volume: 6
  year: 2016
  ident: 2023022002403153400_
  article-title: Plasma extracellular RNA profiles in healthy and cancer patients
  publication-title: Scient. Rep.
– volume: 8
  start-page: 741
  year: 2013
  ident: 2023022002403153400_
  article-title: On numerical aspects of Bayesian model selection in high and ultrahigh-dimensional settings
  publication-title: Baysn Anal.
– volume: 98
  start-page: 169
  year: 2003
  ident: 2023022002403153400_
  article-title: Asymptotic variance and convergence rates of nearly-periodic Markov chain Monte Carlo algorithms
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214503388619193
– volume: 113
  start-page: 1742
  year: 2018
  ident: 2023022002403153400_
  article-title: Tractable Bayesian variable selection: beyond normality
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2017.1371025
– volume-title: Scalable inference for crossed random effects models
  year: 2018
  ident: 2023022002403153400_
– start-page: 233
  volume-title: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti
  year: 1986
  ident: 2023022002403153400_
– volume: 100
  start-page: 381
  year: 2001
  ident: 2023022002403153400_
  article-title: Benchmark priors for Bayesian model averaging
  publication-title: J. Econmetr.
  doi: 10.1016/S0304-4076(00)00076-2
– volume: 5
  start-page: 51
  year: 2015
  ident: 2023022002403153400_
  article-title: Surprising convergence properties of some simple Gibbs samplers under various scans
  publication-title: Int. J. Statist. Probab.
  doi: 10.5539/ijsp.v5n1p51
– volume: 53
  start-page: 410
  year: 2016
  ident: 2023022002403153400_
  article-title: Complexity bounds for Markov chain Monte Carlo algorithms via diffusion limits
  publication-title: J. Appl. Probab.
  doi: 10.1017/jpr.2016.9
– volume: 112
  start-page: 254
  year: 2017
  ident: 2023022002403153400_
  article-title: Nonlocal priors for high-dimensional estimation
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2015.1130634
– volume: 75
  start-page: 317
  year: 1996
  ident: 2023022002403153400_
  article-title: Nonparametric regression using Bayesian variable selection
  publication-title: J. Econmetr.
  doi: 10.1016/0304-4076(95)01763-1
– volume: 19
  start-page: 451
  year: 1992
  ident: 2023022002403153400_
  article-title: Simulated tempering: a new Monte Carlo scheme
  publication-title: Eurphys. Lett.
  doi: 10.1209/0295-5075/19/6/002
– volume: 4
  start-page: 812
  year: 1994
  ident: 2023022002403153400_
  article-title: Sampling from log-concave distributions
  publication-title: Ann. Appl. Probab.
– volume-title: Markov Chains and Stochastic Stability
  year: 1993
  ident: 2023022002403153400_
  doi: 10.1007/978-1-4471-3267-7
– volume: 5
  start-page: 468
  year: 2011
  ident: 2023022002403153400_
  article-title: Random lasso
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/10-AOAS377
– year: 2019
  ident: 2023022002403153400_
  article-title: Informed proposals for local MCMC in discrete spaces
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2019.1585255
– volume: 37
  start-page: 2011
  year: 2009
  ident: 2023022002403153400_
  article-title: On the computational complexity of MCMC-based estimators in large samples
  publication-title: Ann. Statist.
  doi: 10.1214/08-AOS634
– volume: 82
  start-page: 479
  year: 1995
  ident: 2023022002403153400_
  article-title: Efficient parametrisations for normal linear mixed models
  publication-title: Biometrika
  doi: 10.1093/biomet/82.3.479
– volume: 22
  start-page: 571
  year: 2012
  ident: 2023022002403153400_
  article-title: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.08.013
– volume: 28
  start-page: 2309
  year: 2018
  ident: 2023022002403153400_
  article-title: Which ergodic averages have finite asymptotic variance?
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/17-AAP1358
– volume: 107
  start-page: 649
  year: 2012
  ident: 2023022002403153400_
  article-title: Bayesian model selection in high-dimensional settings
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2012.682536
– volume: 90
  start-page: 909
  year: 1995
  ident: 2023022002403153400_
  article-title: Annealing Markov chain Monte Carlo with applications to ancestral inference
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476590
– volume-title: Monte Carlo theory, methods and examples
  year: 2013
  ident: 2023022002403153400_
SSID ssj0000673
Score 2.4935966
Snippet We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We...
Summary We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 489
SubjectTerms Algorithms
Bayesian analysis
Bayesian theory
Bayesian variable selection; Computational complexity; Gibbs sampling; Importance sampling; Markov chain Monte Carlo sampling; Point mass priors
concrete
equations
Importance sampling
Intuition
Markov analysis
Markov chain
Markov chains
Monte Carlo method
Monte Carlo simulation
probability distribution
Regression analysis
Robustness
Sampling
Statistical methods
Statistics
tempering
Title Scalable importance tempering and Bayesian variable selection
URI https://www.jstor.org/stable/26773221
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12316
https://www.proquest.com/docview/2232277044
https://www.proquest.com/docview/2286905568
Volume 81
WOSCitedRecordID wos000470714200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609dCLbzFaJaIXhUiz2ewDvPgqHqRIVfAWdjdbEGqURgv-e3c2aW1BBPEWyISEnde32ZlvAI7EQOJI2zxSOjYRNS4OSiWSKGWayYRKJQcdP2yC93ri6UneLcDZpBem4oeY_nBDz_DxGh1c6XLGyUdlqU9d3I3ZIjSJM1zagOZVv_t4OxuJk6rvSkYuc5KanhQreb6fnktIVU3iHNqcxaw-6XRX_ve5q7Bcg83wvLKONViwxTq0EF9W9MwbgAcwQ-yeCp9fPBJ3NhAiXZVnKAxVkYcX6tNip2U4dttqL1r62TlOoZvw2L1-uLyJ6okKkXHAhEWCxTgQ01JDlNKSa8GNINK4nM-VZZImVhub56lKE2KFzU1inASLlZKWMJ1sQaN4Lew2hFxojlx1Ik8lVbbjcE_aoSbVgmpuGA_geLKsmanpxnHqxTCbbDtwRTK_IgEcTmXfKpKNH6W2vHamIoRx7uJRHEB7oq6s9sAyc7CHEM47lAZwML3tfAcPRFRhXz9QBudxIQdbACdeeb-8Puvf31_4q52_CO9Cy2EsWVX4tqHxPvqwe7Bkxk7To_3aYr8ARhHt3A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CvbiuxifEb0oRJpks4-jVYtiLaIteAu7mxUETaW1Bf-9O5u0tiCCeAtkQsLO69vszDcAx_xZ4EjbLJAq1AHRNg4KyeMgoYqKmAgpnutu2ARrt_nTk7gva3OwF6bgh5j8cEPPcPEaHRx_SE95eX8wUGc28IZ0HhaItaOkAguXD81uazoUx0XjlQhs6oxKflIs5fl-eiYjFUWJM3BzGrS6rNNc-ef3rsJyCTf988I-1mDO5OtQRYRZEDRvAB7BvGL_lP_y5rC4tQIfCascR6Ev88xvyE-DvZb-yG6snejATc-xKt2EbvOqc3EdlDMVAm2hCQ04DXEkpiE6klIJpjjTPBLaZn0mDRUkNkqbLEtkEkeGm0zH2krQUEphIqriGlTyXm62wGdcMWSr41kiiDR1i3ySOtGJ4kQxTZkHJ-N1TXVJOI5zL17T8cYDVyR1K-LB0UT2vaDZ-FGq5tQzEYkoYzYihR7sjvWVlj44SC3wiSLG6oR4cDi5bb0Hj0RkbnpDlMGJXMjC5sGp094vr08fHh8b7mr7L8IHsHTduWulrZv27Q5ULeISRb3vLlQ--kOzB4t6ZLXe3y_N9wuHH_HM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60ivjiXYxnRF8UIk2y2ePRWotiKcUDfAu7my0ImpbWFvz37mzS2oII4lsgExJ2rm-zM98AnPGuwJG2WSBVqAOibRwUksdBQhUVMRFSdGtu2ARrt_nLi-iUtTnYC1PwQ0x_uKFnuHiNDm76WXfGywfDobq0gTeki7BEEkGtXy41HprPrdlQHBeNVyKwqTMq-UmxlOf76bmMVBQlzsHNWdDqsk5z_Z_fuwFrJdz0rwr72IQFk2_BKiLMgqB5G_AI5g37p_zXd4fFrRX4SFjlOAp9mWd-XX4a7LX0x3Zj7USHbnqOVekOPDdvnq5vg3KmQqAtNKEBpyGOxDRER1IqwRRnmkdC26zPpKGCxEZpk2WJTOLIcJPpWFsJGkopTERVXIVK3svNLviMK4ZsdTxLBJGmZpFPUiM6UZwopinz4HyyrqkuCcdx7sVbOtl44IqkbkU8OJ3K9guajR-lqk49U5GIMmYjUujBwURfaemDw9QCnyhirEaIByfT29Z78EhE5qY3QhmcyIUsbB5cOO398vr04fGx7q72_iJ8DCudRjNt3bXv92HVAi5RlPseQOVjMDKHsKzHVumDo9J6vwAnLfFH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+importance+tempering+and+Bayesian+variable+selection&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Zanella%2C+Giacomo&rft.au=Roberts%2C+Gareth&rft.date=2019-07-01&rft.pub=Wiley&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=81&rft.issue=3&rft.spage=489&rft.epage=517&rft_id=info:doi/10.1111%2Frssb.12316&rft.externalDocID=26773221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon