Scalable importance tempering and Bayesian variable selection
We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov...
Uloženo v:
| Vydáno v: | Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 81; číslo 3; s. 489 - 517 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Wiley
01.07.2019
Oxford University Press |
| Témata: | |
| ISSN: | 1369-7412, 1467-9868 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable-selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1369-7412 1467-9868 |
| DOI: | 10.1111/rssb.12316 |