Scalable importance tempering and Bayesian variable selection

We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Jg. 81; H. 3; S. 489 - 517
Hauptverfasser: Zanella, Giacomo, Roberts, Gareth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Wiley 01.07.2019
Oxford University Press
Schlagworte:
ISSN:1369-7412, 1467-9868
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable-selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12316