Existence and U-H Stability Results for Nonlinear Coupled Fractional Differential Equations with Boundary Conditions Involving Riemann–Liouville and Erdélyi–Kober Integrals

The purpose of this article is to discuss the existence, uniqueness, and Ulam–Hyers stability of solutions to a coupled system of fractional differential equations with Erdélyi–Kober and Riemann–Liouville integral boundary conditions. The Banach fixed point theorem is used to prove the uniqueness of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fractal and fractional Ročník 6; číslo 5; s. 266
Hlavní autoři: Subramanian, Muthaiah, Duraisamy, P., Kamaleshwari, C., Unyong, Bundit, Vadivel, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2022
Témata:
ISSN:2504-3110, 2504-3110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The purpose of this article is to discuss the existence, uniqueness, and Ulam–Hyers stability of solutions to a coupled system of fractional differential equations with Erdélyi–Kober and Riemann–Liouville integral boundary conditions. The Banach fixed point theorem is used to prove the uniqueness of solutions, while the Leray–Schauder alternative is used to prove the existence of solutions. Furthermore, we conclude that the solution to the discussed problem is Hyers–Ulam stable. The results are illustrated with examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6050266